学年

質問の種類

数学 大学生・専門学校生・社会人

この問題が分かりません よろしくお願いいたします🙏

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月◆◇日) も 性別 (男or女) も全く同じである人が少なくとも2人い ある.このことが成立していることを以下に 「鳩の巣原 「理」を適用して説明しています a,b,cに当てはまる正の整数を, dは 「大きい数」 か 「小さい数」 のいずれかの語句を答えよ. 尚, 解答の回 」の入力は不要です。 答には, (配点: 2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われてい て 多くても15, 0000 (十五万) 本らしいです. よっ て考えられる毛髪の本数は0本~15,0000本の全 a 通 りです. 誕生月日については, 閏年の2月29日生まれの方がお られることを考慮すると、 考えられる誕生月日は,全部 でb通りあります. よって、考えられる (毛髪の本数, 誕生月日, 性別) の相異なる組は,全部でc通りになります。これを「鳩 の巣」と考えます。 一方, 「鳩」を日本人と考えると, 日本の人口約1, 2000 0000 (1億2千万) 人と少なく見積もってもこの 数は上で求めた 「鳩の巣」 の個数 cよりはdなので, 「鳩の巣原理」により, 日本人で毛髪の本数も誕生月日 (○○月◇◇日)も性別も全く同じ2人が必ずいることが 解りました。 添付ファイルは ありません

未解決 回答数: 1
数学 高校生

全くわかりません どなたか教えていただきたいです!

338 第9章 整数の性質 応用問題 1 正の整数a,bに対して, a を bで割った商をα余りを とする.つ まり、 a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ. (1) aとbの公約数をd とすると,dはbとrの公約数でもある. brの公約数をd' とすると, d' はaとbの公約数でもある. (2) (3) αともの最大公約数とbrの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となる p336 の (*) を証明してみま しょう. 考え方としては, 「αと6の公約数」と「brの公約数」 が (集合として) 一致することを示そうというものです. それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αと6の公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき d bx 4 (es) bog= bog= (01)bog r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,) dは6とrの公 約数である. (2)との公約数がd' であるから, WAON (ROSS) b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'g+d'R=d' (B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,) d' はαと の公約数である。 (3)(1)(2)より「α と6の公約数」は「bとの公約数」 と(集合として) 一 致する.したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。 おません る 持 る

回答募集中 回答数: 0
数学 高校生

こちらの解き方と答えを教えて頂きたいです🙇‍♀️

日本人で, 毛髪の本数も誕生月日 (○○月◇◆日) も性別 (男or女) も全く同じである人が少なくとも2人いる.この ことが成立していることを以下に, 「鳩の巣原理」 を適用し て説明しています。 a, b, cに当てはまる正の整数を, dは 「大きい数」 か 「小 「さい数」のいずれかの語句を答えよ. 尚, 解答の回答には, 「」の入力は不要です. (配点: a2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われていて 多くても15,0000 (十五万) 本らしいです。 よって、考えら れる毛髪の本数は0本~15,0000本の全 a通りです. 誕生月日については, 閏年の2月29日生まれの方がおられ ることを考慮すると、 考えられる誕生月日は,全部でb通り あります. よって、考えられる (毛髪の本数, 誕生月日, 性別)の相 異なる組は, 全部でc通りになります. これを「鳩の巣」 と 考えます. 一方,「鳩」を日本人と考えると,日本の人口約1, 2000,000 (1億2千万) 人と少なく見積もっても,この数 | は上で求めた 「鳩の巣」 の個数cよりはdなので, 「鳩の巣 「原理」 により, 日本人で毛髪の本数も誕生月日 (○○月◇◇ 日) も性別も全く同じ2人が必ずいることが解りました.

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
地理 中学生

わからないです教えてください泣

13 14y Oy+6 25x-13g 2y (3 176 4 14 x+ 125 a 1 らの相は 69 17. 5 3けたの正の整数で,百の位、十の位, 一の位の数の和が9でわり切れるとき,こ の3けたの整数が9でわり切れることを 文字式を使って説明しなさい。 20点(各5点 の 問題では3けたの場合を考えたけど, 何けたの数でも、 各位の数の和が 9でわり切れるとき,その整数は 9でわり切れることを説明できるよ。 問題文の9をすべて3にかえた 問題を解いてみよう。 右の説明と 同じようにすれば説明できるよ。 2n+(2n+2)+ (2n+4) =6n+6 =6(n+1) n+1は整数だから, 6(n+1)は6の倍数 である。 したがって, 連続する3つの偶数の和は, 6の倍数である。 5 p.1765 15点 百の位の数を a, 十の位の数をb, 一の位 の数をc とすると, 3けたの正の整数は, 100a +10b+c と表される。 また, a+b+cは9でわり切れるから, m を整数とすると, a+b+c=9mと表される。 このとき, 100a +10b+c =99a+9b+ (a+b+c) =99a+9b+9m =9(11a+b+m) 11a+b+m は整数だから, 9 (11a+b+m) は9の倍数である。 式の計算 したがって, 3けたの正の整数で,百の位, 十の位、一の位の数の和が9でわり切れる とき、この3けたの整数は9でわり切れる。 Sa²b³ 5 -b 6 Fy2 2xy 6 次の等式を、[ ]内の文字について解きなさい。 16 p.17 B6 15点(各5点)

未解決 回答数: 1