学年

質問の種類

物理 高校生

なんで(1)や(2)で有効数字が2桁になるんですか

基本問題 29 30 31 ○小球 ① 基本例題6 水平投射 物理 高さ19.6mのビルの屋上から, 小球を水平に速 さ 14.7m/s で投げ出した。 重力加速度の大きさ を9.8m/s2 として、次の各問に答えよ。 14.7m/s (1) 投げ出してから, 地面に達するまでの時間 を求めよ。 濃度を 解説動画 基本問題39 x 第 No. 力学Ⅰ Date ないので, 「v2=2gy] √2×9.82 =13.8m/s 14 m/s 落とした」 とは 初 床である。 の中にある数値を 37. 19.6= 2=4.0 ある。 t = ±2.0s t0 なので2.0s は解答 に適さない。 したがって 2.0s (2) 小球は,ビルの前方何mの地面に達するか。 (3) 地面に達する直前の小球の速さを求めよ。小の 指針 投げ出した位置を原点とし, 水平右 向きにx軸,鉛直下向きにy軸をとる。 小球の運 動は, x方向では等速直線運動, y方向では自由 落下と同じ運動をする。 解説 (1)地面のy座標は19.6mである から,「y=1/29t2」を用いて、高さはいくらか 1/2×9.8× 地面 (2) 地面に達するまでの2.0秒間, 小球は,水平 方向に速さ 14.7m/sの等速直線運動をする。 29 m x=vxt=14.7×2.0=29.4m/ (3) 鉛直方向の速度の成分 vy は, vy=gt=9.8×2.0=19.6m/s 小球の速さ [m/s] は,水平方向と鉛直方向の 速度を合成し,その大きさとして求められる。 =√ox2+vy^2=√14.72+19.62 (4.9×3)+(4.9×4)=4.9√32+42 [m=4.9×5=24.5m/s 25m/s ( 34, 35, 36,37 ① 基本例題7 斜方投射 物理 Sms.es & 基本問題 40 41 42 Em/s/ 水平な地面から,水平とのなす角が30℃の向きに、 速さ40m/sで小球を打ち上げた。 図のようにx軸, *9.8m/s2 として 40m/s JJ \m 30°(1) x 地面 例

未解決 回答数: 1
数学 高校生

(2)の問題で、なぜ判別式がD/4になるのかわかりませんでした。その後の式の意味も理解できていないので、教えてもらえると嬉しいです。

例題 思考プロセス 題 85 2次方程式の実数解の個数 kを定数とするとき, 次の2次方程式の実数解の個数を調べよ。 (1)x2-3x+k-2=0 場合に分ける ★☆ (2)x2+2kx+k-2k+4=0 2次方程式の実数解の個数は判別式 D の符号によって決まる。 (ア) D0 異なる2つの実数解をもつ。 (イ) D = 0 ⇔ ただ1つの実数解 (重解)をもつ。 (ウ) D<0 ⇔ 実数解をもたない。 かどうかで noibA Action» 2次方程式の実数解の個数は, 判別式の符号を調べよ 解 (1) 与えられた2次方程式の判別式をDとすると D=(-3)2-4・1・(k-2)=-4k +17 17 4のとき2個入 (ア)D=-4k+17>0 すなわちくのとき 2個 17 (イ) D=-4k+17=0 すなわち k= =1のとき 1個 17 4 (ウ) D=-4k+17 < 0 すなわちん > > のとき 0 個 moito になる 定数項k-2は()を付 けて1つのものと考えて 計算する。 不等号の向きに注意する。 -4k+17> 0 -S) = -4k> -17 (2)与えられた2次方程式の判別式をDとすると2次方程式 D (ア) 24 D (イ) 4 D 4 = =k-1· (k-2k+4)=2k-4 =2k-40 すなわちん > 2 のとき 2個 =2k-4=0 すなわちん = 2 のとき 1個 これらは、 (ウ) // =2k-40 すなわちん <2のとき0個 ては 17 4 (S) +26′x+c=0 におい D =672-ac 44000 を用いてもよい。 Point .+1)

解決済み 回答数: 1
1/1000