学年

質問の種類

数学 高校生

赤で線引いたところは、なんで4で割ってるんですか

190 基本 例 111 2次不等式の解法 (2) 0000 次の2次不等式を解け。 (2) x2-4x+5>0 (1) x2+2x+1>0 (4) -3x2+8x-6>0 (3) 4x4x2+1 p.187 基本事項~ D=0のとき [a>0] D<0のとき 指針 前ページの例題と同様, 2次関数のグラフをか いて、不等式の解を求める。 グラフと x軸との共 有点の有無は,不等号を等号におき換えた2次方 程式 ax2+bx+c=0の判別式Dの符号, または 平方完成した式から判断できる。 x (1)x2+2x+1=(x+1) であるから, 解答 不等式は (x+1)2>0 よって、 解は 1以外のすべての実数 (1) (2)x2-4x+5=(x-2)2 +1であるから, (2) 不等式は (x-2)^+1>0. よって解はすべての実数 (3) 不等式から 4x2-4x+1≦0 4x2-4x+1=(2x-1)2 であるから, 不等式は (2x-1)≤0 よって, 解はx= 2 (4) 不等式の両辺に-1を掛けて 3x²-8x+6<0 2次方程式 3x28x+6=0の判別式を D Dとすると 1/2=(-4)3・6=-2 + -1 + + kkkk (3) 2 (4) D=0 の場合, 左辺の を基本形に。 x-1,-1<x と答え 「てもよい。 DO の場合, 左辺の を基本形に。 関数 y=x2-4x+5 の値 は すべての実数x y>0 し (1 関数 y=4x²-4x+1の 値は x=1/2のとき y=0 x= +1/2のとき x2の係数は正で,かつD<0 であるから, すべての実数 D<0 から, xに対して3x²-8x+6>0が成り立つ。 よって, 与えられた不等式の解はない 別解 不等式の両辺に-1を掛けて 3x²-8x+6<0 3x²-8x+6=3(x- ->0であるから, 3x²-8x+6<0 を満たす実数x は存在しない。 よって, 与えられた不等式の 解はない 練習 次の2次不等式を解け。 111 (1) x2+4x+4≧0 (2) 2x2+4x+30 (3) -4x2+12x-9≧0 (4)9x2-6x+2>0 y=3x²-8x+6 ① のグラフとx軸は共有 点をもたない。 これと ①のグラフが下に凸で あることから すべての 実数xに対して 3x²-8x+6>0 NG PRIC 内の ラフをかく。 CHART

未解決 回答数: 1
化学 高校生

どなたかこの問題がわかる方いらっしゃいますか?とても難しく、分からなかったので、考察2だけでも教えてもらえると嬉しいです。

10 思考学習!! アボガドロ定数の測定の歴史 歩美は, アボガドロ定数がどのようにして求 められたのか興味をもった。 先生に聞いてみる と、現在のアボガドロ定数は, 高純度のケイ素 の結晶の球体(図A) に含まれる原子の数を, 精 密にはかって求めているということだった。 また, アボガドロ定数を求める試みは19世 紀末ごろから始まり,今日までさまざまな方法 で測定してきたことを先生から聞いた。 そこで, 図A シリコン結晶 歩美は, そのアボガドロ定数測定の歴史を調べてみることにした。 調べていくと, アボガドロ定数の測定方法の一つにステアリン酸の単分子膜 を利用する方法があることがわかった。 ステアリン酸分子 C17H35 COOH は, 水になじみやすい部分(-COOH)と やすい液体に溶かして清浄な水面に滴下する。 すると液体が蒸発してステアリ みにくい部分(C, Hgs-) をもつ(図B右)。これをシクロヘキサンのような蒸発し ン酸のみが水面上に広がり, 分子の-COOH を水側, C17H35-を空気側に向けて、 一層にすき間なく並ぶ(図B左)。 これを単分子膜という。 10 S〔cm²〕] (単分子膜の面積) s〔cm²) ステアリン酸1分子が 水面上で占有する面積 同 H) CH3 水になじみにくい 部分 CH2 1 水になじみやすい 水面 O OH 部分 単分子膜 ステアリン酸1分子 図B ステアリン酸の単分子膜 HM (1) mol 単分子膜の面積と,ステアリン酸1分子が水面上で占める面積がわかれば, 単分子膜に含まれる分子の数がわかり, アボガドロ定数を求めることができる。 その計算過程を順に考えてみよう。 |考察■ 単分子膜の面積を S[cm],ステアリン酸1分子が水面上で占める面 |積をs[cm?]としたとき, 単分子膜をつくるステアリン酸分子の数はど のような式で求められるか。

回答募集中 回答数: 0
1/1000