学年

質問の種類

英語 高校生

以前画像3枚目の様に修飾限定予告のthatというものを習ったので今回もその形なのかと思い、それらのと入れずに訳してしまったのですがこのthoseの識別は文脈判断ということでしょうか? 教えて頂きたいです。よろしくお願いいたします。

実理 K The starting point for today's *meritocracy, of course, is the idea that intelligence exists and can be measured, like weight or strength or fluency in French. The most obvious difference between intelligence and these other traits is that all the others are presumably changeable. If someone weighs too much, he can go on a その人 →Heyで受けるのが一般的 5 diet; if he's weak, he can lift weights; if he wants to learn French, he can take a course. But in principle he can't change his intelligence. There is another important difference 原則として MV between intelligence and other traits. Height and weight and speed and strength and サフィス体例 関係性が強い文がくる even conversational fluency are real things; there's no doubt about what's being 間違いなん measured. Intelligence is a much murkier concept. Some people are generally (2) m2 Vogue 10 smarter than others, and some are obviously talented in specific ways; they're chess 天才 S masters, math *prodigies. But can the factors that make one person seem quicker than another be measured precisely, like height and weight? Can we confidently say that one person is 10 percent smarter than another, in the same way we can say he's 10 へんて、いつだっ S percent faster in the hundred-yard dash? And can we be confident that two thirds of 櫂へん 言いかえ 15 all people have IQs within one standard deviation of the norm that is, between 90 ように and 110 - - as we can be sure that two thirds of all people have heights within one standard deviation of the norm for height? Yes, they can, and yes, we can. besure least, are the answers that the IQ part of the meritocracy rests on. Those, at (3)-

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0
1/423