学年

質問の種類

化学 高校生

問1で仮定が誤りになっている理由がわからないです。 全部分解した時も平衡が成り立っていなくてはならないのですか?平衡状態の圧力より大きくなってはいけないのでしょうか?

次の文を読み, 以下の問1~3に答えよ。 ただし, 気体定数R=8.3kPa・L/(K・mol)とし、 答の数値はすべて有効数字2桁で記せ。 20:41 503- 炭酸カルシウム (CaCO3) は石灰石や大理石の主成分として天然に存在する。 密閉容器中で 890℃以上の高温では, 二酸化炭素の圧力がある値に達すると次式のよう 炭酸カルシウムを高温に加熱すると二酸化炭素と酸化カルシウム (CaO) に分解するが、真空 衡状態となる。 このときの温度と二酸化炭素の圧力の関係は表1のようになる。 CaCO3 (固) CaO (固) + CO2(気) 表1 炭酸カルシウムの平衡状態における温度と二酸化炭素の圧力の関係 1100 温度 [℃] 900 圧力 [kPa] 1.0×102 1.2×10° また,カルシウムと同じ2族に属するバリウムの炭酸塩 (BaCO3)においても真空密閉容器中 で1100℃ では次式の平衡状態となり,このとき,二酸化炭素の圧力は 2.4kPa である。 BaCO3 (固) BaO (固) + CO2(気) まれていた 気体は理想気体としてふるまうものと仮定する。また,容器内の固体の体積は無視できるも のとし,使用する容器は耐圧・耐熱であり, 容器の体積の変化はないものとする。 NO. 質量パーセントで 問1 炭酸カルシウム 0.20mol を 10 Lの容器に入れて25℃で真空密閉状態とした後,容器 を900℃に保った。 このとき, 容器内の圧力は何kPa になるか。

未解決 回答数: 1
化学 高校生

解説問3の平衡は元々はほとんど左によっているのがどこからわかったのか教えて頂きたいです。それと、HClを入れると平衡が左によるというのはH3O+のHが増加するからという認識で良いのでしょうか? 教えて頂きたいです。よろしくお願いいたします。

13-5 【復習問題】 弱塩基の電離平衡, 加水分解 0.10mol/Lのアンモニア水10mLを0.10mol/Lの塩酸で滴定したときの滴定曲線は 図のようになる。 pH 11 9 クト 3 滴定曲線から, 滴定の終点前後ではpHが大きく変化していることがわかる。 塩酸を 10.10mL滴下したときの溶液のpHを小数第2位まで求めよ。 ただし、このときの溶液 の体積は近似的に20mLと考えてよい。 3 5 1 0 2 4 6 8 10 12 滴下した 0.10mol/Lの塩酸の体積 [mL] 以下の設問において、必要があれば、次の数値を用いよ。 アンモニアの電離定数: Kb = [NH〟] [OH] [NH3] =2.0×10mol/L 水のイオン積:Kw= [H+] [OH−] =1.0×10-14 (mol/L)2 log 10 2=0.30 ○ 問1 滴定開始点の溶液(0.10mol/Lのアンモニア水)のpHを小数第2位まで求めよ。 *問2 滴定曲線から滴定の終点(中和点)の溶液のpHは約5で,弱酸性であることがわかる。 これは,次式に示す塩化アンモニウムの加水分解が起こるからである。 NHC1→NH + + CI NH4+H₂ONH3 + H3O+ 後者の可逆反応の電離定数は次式で表される。 ただし, H3O+ は H+ と表記した。 Kh= [NH3] [H+] [NH&+] 次の(1)~(3)に答えよ。 ただし, 滴定の終点における溶液の体積は20mLと考えてよい。 (1) 滴定の終点における溶液の塩化アンモニウムの濃度を Csmol/L とする。 滴定の終点 における溶液の水素イオン濃度を Cs と Kh を用いて表せ。 (2) Kh をKb と Kw を用いて表せ。 (3)滴定の終点における溶液のpHを(1),(2)の式を用いて計算し、小数第2位まで求めよ。 -142-

解決済み 回答数: 1
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
1/640