学年

質問の種類

理科 中学生

教えて欲しいです

重点ドリル 2 地震 もっと なっとく! 学習日 月 AB間の震源距離の差 「ポイント STEP 1 地震波は, 震央を中心に同心円状に広がっていく。 初期微動 P波 継続時間 S ch 3 地震の発生した時刻(1) 右の表は,ある地震について、各地 点の震源距離と初期微動,主要動が はじまった時刻を表したものである。 (1)地点A,Bの震源距離の差は何km か。 地点 初期微動が 主要動が 震源距離 A 56 km はじまった時刻 7時26分45秒 はじまった時刻 B 84km 7時26分49秒 7時26分53秒 7時27分01秒 2 ●初期微動継続時間 ドリル ナビ =S波が届くまでの時間-P波が届くまでの時間 ●地震の波が伝わる速さ 時刻 速さ [km/s]=- 地震の波が届くまでの時間〔s] 震源距離 [km] (2)地点A,BにP波が届くまでにかかった時間の差は何秒か。 km A地点で初期微動が はじまった時刻 A地点で主要動が はじまった時刻 (3) P波の伝わる速さは何km/sか。 秒 活きている地球 1 地震によるゆれの広がり 次の(1),(2)の問いに答えよう。 数字は地震発生時刻から ゆれはじめまでの 時間(秒) 隠岐 加賀 33 35 (1)地震が発生してから各地でゆれがはじまるまで 倉吉 大田 23 の時間が20秒、30秒の地域を, 10秒の線にならっ てなめらかな線で結ぼう。 136 西城 英田/加西 益田 ・舞鶴 MS 22 10秒 16 22 -08 大阪平群 08__ 10 美浜 • 和知 彦根 30 名古屋 (2) 震央の位置を推測して, ×印をかこう。 高野 相生 20 物部 古座 2 地震の波が伝わる速さ 右の図は、ある地震の地点Aでの地震計のゆれの記録である。 (1)地震が発生してから地点Aで初期微動がはじまるまで にかかった時間は何秒か。 秒 震源距離 [km] 120 地点 A (4)地点A,BS波が届くまでにかかった時間の差は何秒か。 (5) S波の伝わる速さは何km/sか。 (6) P波が震源から地点Aに届くのにかかった時間は何秒か。 (7)この地震が発生した時刻は何時何分何秒か。 4 地震の発生した時刻(2) 右の図は,ある地震の地点A, 地点Bでの地 km/s km/s 秒 時 秒 分 [km] 震計のゆれの記録である。 204 (1)地点A, Bでの初期微動継続時間は何秒か。 (地点 B) 地点A 秒 震源距離 地点 B 68 秒 (地点 A) 0 15時 11分00秒 12分00秒(2) 地点 A,Bの震源距離の差は何kmか。 10分20秒 時刻 (2) P波の伝わる速さは何km/sか。 (地震発生) km ① km÷② |s=③ |km/s (3) P波の伝わる速さは何km/sか。 (3) 地震が発生してから地点Aで主要動がはじまるまでにかかった時間は何秒 か。 (4) S波の伝わる速さは何km/sか。 1年 (4) S波の伝わる速さは何km/s か。 km (5) この地震が発生した時刻は,何時何分何秒か。 00秒 20秒 8時15分 8時15分 8時15分 8時16分 8時16分 00秒 20秒 40秒 時刻 km/s km/s 時 分 秒 35

未解決 回答数: 1
数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
生物 高校生

生物基礎の問題で、なぜ「分泌顆粒数が少なくなった=ホルモンや酵素が分泌された」という考え方になるのでしょうか?どのように読み取るのでしょうか?それともこの内容は、暗記ですか?

81 すい臓のホルモン 5分 実験 正常な マウス No. 1 と No.2 から, 一晩絶食後に血 液を採取した。 絶食後, マウス No. 1にはグ ルコース 50mg入り生理的食塩水 0.5mL を 血管内に直接投与し, マウス No. 2には流動 食 (糖質50mgを含む) 0.5mLを胃内に直接 投与した。 投与1時間後 2 時間後に血液を採 図1 高 血糖値 ホルモン値 酵素値 低 絶食 1時間後 2時間後 Y細胞 細胞 取し血糖値, すい臓由来のホルモン値, すい臓由来の酵素値を測定した(図1)。 血糖値を上げるホルモンとしては, すい臓の ア などが知図2 られている。 図1のホルモン値は,イの推移を見たもので ある。 すい臓由来のデンプン分解酵素にはアミラーゼがあるが, 血中で高値にならないのは、 分泌された酵素はすい管を経て, 胃 と小腸をつなぐ十二指腸に排出されるからである。 図2にすい臓の顕微鏡像の模式図を示すが,X 細胞は, 分泌物 の合成に関与する細胞小器官が発達している。 Y細胞とZ細胞は, 血管にホルモンを分泌しており, 小型の分泌顆粒に分泌物が含ま X 細胞 。 No.1 • No. 2 れている。 (18 熊本大改) 問 ア イ ① グルカゴン に入る語を,次の①~④のうちからそれぞれ一つずつ選べ。 ② 糖質コルチコイド ③ アドレナリン 問2 マウス No.1 と No. 2 の投与後のすい臓 図3 X細胞 ④ インスリン Y 細胞 細胞 多 のX, Y, Z 細胞内での, 細胞当たりの分泌 顆粒数の推移を観察すると, 図3のように なった。 X, Y, Z細胞は,ア・[ イ (相対数) 少 アミラーゼのうちどの産生細胞か。 最も適当 な組合せを、次の①~⑥のうちから一つ選 絶食 1時間後 2時間後 べ。 ① ③ ⑤ アXYZ イ アミラーゼ Y Z ② X X Z Y ア XYZ ZZY イ アミラーゼ Y X X 。 No.1 • No.2 » 4. 例題 6

回答募集中 回答数: 0
生物 高校生

4の問題がわからないです。 公式ですか?教えて下さい

リード + リード D 知識 22 ミクロメーターについて、 以下の問いに答えよ。 応用問題 図は,光学顕微鏡にて100倍で観察した視野に見られる2種類のミクロメーター (2 b) の一部を示したものである。 なお, ミクロメーターには1mmを100等分した目 盛りが記されている。 40 50 60 30 (1) この光学顕微鏡のレボルバーを操作した際, 観察視野内でミクロメーターの目盛りの幅 が変わって見えるのは, a, b のどちらか。 b 記号で答えよ。 また, そのミクロメーター a の名称を答えよ。 (2)調節ねじの操作によるピントの変化について, 最も適当なものを次の(ア)~(ウ)から 1つ選べ。 (ア) ミクロメーターa のみ変化する。 (イ) ミクロメーター b のみ変化する。 (ウ) ミクロメーター a, b どちらも変化する。 この光学顕微鏡の対物レンズの倍率をかえて計測すると, ミクロメーター bの1 目盛りが示す長さ (μm) は,図の場合のx倍になることを確認した。 この倍率で, ある生物の卵細胞を観察し、 直径をミクロメーター bで計測すると38目盛りであ った。この卵細胞の直径は何μm か, xを用いて表せ。 (3) のとき, 対物レンズの倍率を図の場合の何倍にしたと推測できるか, xを用い て表せ。 [岩手医大 コ

回答募集中 回答数: 0
理科 中学生

中学一年理科、生きている地球の問題です。 四角4(2)②がわかりません。 答えは2枚目です。よろしくお願いします。

地層のつな いき 図は、ある地域の 地点Ⅰ 0m 地点Ⅱ 地点Ⅱ地点Ⅳ の地点Ⅰ Ⅱ. ちゅうじょう たてじく である。縦軸の目 おもりは地表からの深 における柱状表 5m- 地表からの深さ A れき岩 砂岩 m 泥岩 10m (1) 凝灰岩 IC を表している。ま EX 15m (2) ① 地点Ⅰ~ⅣVは標 とうかんかく なら だん がすべて同じであり, 一直線上に等間隔で, 地点Ⅰ 地点Ⅱ, 地点 地点の順に並んでいるものとする。 ただし、この地域には, 断 やしゅう曲、地層の上下の逆転はなく, 地層が一定の方向に傾いて 広がっている。 (茨城県改題) ぎょうかいがん かたむ 図の凝灰岩のように,遠く離れた地層が同時代にできたことを調 べる際の目印となる地層を何というか。 地点Ⅰ~Ⅳをふくむ地域の地層が堆積した環境について 次の① ②の問いに答えなさい。 すな どろ ① れき, 砂,泥のうち, 河口からもっとも離れた海底に堆積する ものはどれか。 ②地点Ⅲが堆積した期間に、この地域の海の深さはどのように変 化したと考えられるか。 図の地層の重なり方に注目して書きなさ い。なお, A~Cは海底でつくられたことがわかっている。 3 地点ⅣVを調べたとき, 凝灰岩がある深さとしてもっとも適当なも のを、次のア~エの中から1つ選びなさい。 ア 19~20m イ24~25m ウ 29~30m エ34~35m じょうはつざら すうでき 04 岩石Xのかけらを採取し, 蒸発皿に入れ, うすい塩酸を数滴かけ たところ、気体が発生してとけた。 岩石 X として適当なものを,次 のア~エの中から1つ選びなさい。 がん ア斑れい岩 イ 安山岩 せっかいがん ウチャート エ石灰岩 (3

未解決 回答数: 1
数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
1/95