学年

質問の種類

数学 高校生

カッコアの問題でθ=α-βとして解答してると思うんですが、なぜマイナスなんですか?α+βでは間違いなのでしょうか。

1 直線/なす角 2 直線のなす角 2直線のなす角は,交点のまわりに角を 集め、回転角でとらえよう. 傾き m の直線から傾き m2の直 線に反時計回りに測った角はtanの加法定理でとらえられる. 図2において, 0=β-αであるから, (ア) 2直線æ-3y+5=0, x+2y+4=0 のなす角 0 2 100ses)を求めよ. (高知工科大-後 (0 (イ) 原点を通り,直線x+2y4=0と45°の角をなす直線の方程式を求めよ. 傾きは tan O 直線と軸の正方向とのなす角 (反時計 回りに測った回転角) を0とすると, 1の傾きは tan0 (ただし, 0≠90° である. (高崎経済大 (=tana) 図1 図2 Ay 傾きm2(=tanβ) 傾き m 傾きtane 84 O a B 軸に平行 tanβ-tana tan0=tan(β-α)= m2-m1 1+tan βtana 1+m2m1 また,m と 0からm2をとらえることもできて, m2=tan (α+0)=- 1-m₁tan なる.ただし直線がy軸に平行なときや, 2直線が垂直 (mm2=1) のときは使えないことに注意. 13円 8 tana +tano 1-tana tan m1 +tan と 解答 曲 To (ア) 右図のように,回転角α,βを定めると tana-tanβ tan0=tan (α-β)= 1+tanatan B 565-6 12 1 3 1+ 13 1/ 1 - 12 =1 0 =π/4 (イ) x軸の正方向から19 a B0 X y=-- 12 x-2 x-3y+5=0のとき, 5 y x+ x+2y+4=0のとき, y=- X- 2 tana= 1 3' tanß=-1 2

未解決 回答数: 1
物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
1/1000