学年

質問の種類

地学 高校生

地学基礎の地球の形と構造です。問15の解説の35°65'がどこから出てきたのか分かりません。教えてください至急お願いします🚨

A 6 (km) 地球の形は,実際には山や谷, 海嶺や海溝もあり、 完全な球体でもなければ回転楕円体 でもない。ここで, 地球の最高峰の高さが1万m, 海の最深部の深さが1万mであると する。 地球の赤道半径を5cm とすると,この高さの差2万mは何cmとなるか。 次の(ア) 〜(ケ)から選べ。 (ア) 0.15cm (イ) 0.16cm (ウ) 0.17cm (エ) 0.015cm (オ) 0.016cm (カ) 0.017cm (キ) 0.0015cm (ク) 0.0016cm (ケ) 0.0017cm (2013 桜美林大改) 指針 解説 (1) 面積の割 応している。陸地の標 さえておこう。 (2)陸地の平均標高が約840mである。 画面の位置はbであることがわかる。 面積に占める割合の小さい範囲で水深が している。 Bは海洋地域の最も水深の深い部 ・B 5 10 15 20 表面積に占める割合 [%] (オ) 海岸段丘 す図として正しいものを しだ距離が近いのは, 北極 方向と短軸方向の半径の 15 地球の大きさ 千葉市とつくば市は同じ経線上にあるとして, 千葉市の緯度を北緯 35°38′ つくば市の緯度を北緯 36° 5′ とすると, 千葉市とつくば市の地表面に沿った距 離は何km か。 小数第1位を四捨五入して答えよ。 ただし, 地球は半径6400km の完全な 球形として計算してよい。 なお, 1° (度)=60' (分)であるとし, 円周率は3.14 とする。 (2015 千葉大) 16 地球の内部構造 地殻, マントル, 核の体積比を表すグラフとして最も適当なものを, 次の (ア)~(エ)から選べ。 (ア) 地殻 (イ) 地殻 核 (ウ) (エ) 地殻 地殻 核 北緯45 北極 赤道 45° 核 核 マントル マントル マントル マントル 緯度差 でいるため、 緯度 赤 大 17 地球の内部構造 地球の平均密度は,地球全体の質量 (6.0×102g) と体積 (1.1× 10cm²)から求めることができる。 地殻とマントルを合わせた部分の体積を9.2×10cm3 平均密度を4.5g/cm とすると,核の平均密度は何g/cm か。 小数第1位を四捨五入して 答えよ。 (2015 センター) で す

解決済み 回答数: 1
化学 高校生

問3途中式教えてください 2枚目です

rの正 ると 入試攻略 への必須問題】 金属セシウム Cs の結晶の単位格子は体心立方格子である。 セシウム原 子は剛体球とし、 最近接のセシウム原子どうしは接触しているとする。 √2≒1.41,√3 ≒ 1.73, 円周率 3.14 として,次の問いに答えよ。 問1 単位格子に含まれる原子の数を書け。 問2 セシウムの結晶の充填率 [%] を有効数字2桁で求めよ。 問3 単位格子の1辺を6.14×10cmとし,セシウムの結晶の密度 g/cm² を有効数字2桁で求めよ。 アボガドロ定数は 6.0×1023 〔/mol], Csの 原子量は 133 とする。 (東北大) 解説 問1 体心立方格子 配位数 8 です 1辺αの立方体の中に半径の球体 の原子が2個含まれているので,充填率 p 〔〕 は, 半径1の球2個分の体積 立方体の体積 x100 πr3x2 3 a³ X100 に \3 r = π ② 3 1 [個分〕 ×8+1 [個]=2 [個] 8 頂点 立方体の中心 問2 半径をr, 立方体の1辺の長さ をα とすると, αとの関係は, ← √2a √a² + (√2a)² = 4r 47 637) よって、 34 となります。 23 …① ・ななめ x2x100 ①式を②式に代入すると, b=117 (√3) ³×2×100 p= 8 ≒67.9... [%] 問3 Csの密度 [g/cm²〕 Cs 2個分の質量 〔g〕 = elge と 単位格子の体積 〔cm〕 Cs 原子1個の質量 133 6.0×1023 ×2 (g) (6.14×10-6)3[cm] ≒1.91(g/cm あちに ななめの 答え 問1 2個 問2 68% 問3 1.9g/cm²

回答募集中 回答数: 0
数学 中学生

(2)について質問です。なぜこの式になるか分かりません💦

解けたら エルに挑戦争 19 による説明 ること 難易度 レベル★★ ★ 考えてみよう! 220-21 3 下の図のように、大きさのちがう半円と。 同じ長さの直線を組み合わせて, 陸上競技用 のトラックを作った。 [半円部分 直線部分 幅1m 部分 カレンダー いろいろ am 0 第4レーンの 26m 第1レーンの 走者が走る距離 走者が走る距離 第1レーン 第4レーン 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また, 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず, 円周率を とすると次の問いに答えなさい。 回(1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を について解きなさい。 和歌山 右の さんは、 1+8+1 のように さんは ふめ数 進 ょう l=2a+wb 両辺を入れかえる よる説明 2a+wb=l 2a=l-rb wbを移填する a=b-rb 両辺を2でわる l-rb 2 a= 2 [栃木] (2) 図のトラックについて, すべてのレーンの A ゴールラインの位置を同じにして, 第1レー ンの走者が走る1周分と同じ距離を各レーン の走者が走るためには, 第2レーンから第 4レーンまでのスタートラインの位置を調整 する必要がある。 第4レーンは第1レーンよ りスタートラインの位置を何m前に調整す るとよいか。 求めなさい。 ただし、走者は、 各レーンの内側のラインの20cm外側を走る ものとする。 第1レーンは、amの直線部分の長さ2つ分と、 直径(6+0.4)mの半円の弧の長さ2つ分の合計だから、 X2+(+0.4)xx/12×2=2a+b+0.4(m) 第4レーンは, amの直線部分の長さ2つ分と、 直径(6+6.4)mの半円の弧の長さ2つ分の合計だから X2+(b+6.4m×1 x2 =2a+b+6.4x(m) ② ②①の分だけ 第4レーンのスタートラインを前にす ればよいから, (2a+xb+6.4x)-(2a+xb+0.4x) =6(m) 6 m

未解決 回答数: 1
1/283