数学 大学生・専門学校生・社会人 14日前 統計学の問題です。全部分かりません。教えてください。 ③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。 回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人 17日前 マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。 H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 21日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
物理 大学生・専門学校生・社会人 29日前 計算したら距離がマイナスになるのですが、どうして回答は右側になるのかよくわからないので教えてください。 以下の問いに答えよ。 1. 下図について以下の問いに答えよ。 (1)P1, P2, P3の合力Rをバリニオンの定理を用いて求めよ。 またその位置についてはA点 からの距離として表しなさい。 ( 「A点の左(右) 側にOm」 といった記述にすること。) (2) 合力Rと釣り合う力を下図に書き込みなさい。 P2 = 6kN DKN P1=3kN 8m A 7m P3=4kN ク 1 P 回答募集中 回答数: 0
化学 大学生・専門学校生・社会人 約1ヶ月前 この問題がわかりません教えていただきたいです 3、以下の分子の共有電子対の数、 非共有電子対(孤立電子対)の数をそれぞれ述べよ。 H2、NH3、HF、 N2、 O2、 H2O2、 H2S、 CO2、 C2N2 C2HCl、 C2HCl、Clz、 CHCl3 4、4の分子の単結合の数、 二重結合の数、 三重結合の数をそれぞれ述べよ。 回答募集中 回答数: 0
資格 大学生・専門学校生・社会人 約1ヶ月前 日商簿記3級のサンプル問題です。 すべての問題の正答を教えていただきたいです。 よろしくお願い致します。 第1問 下記の各取引について仕訳しなさい。 ただし、 勘定科目は、 設問ごとに最も適当と思われるものを選び、 答案 用紙の()の中に記号で解答すること。 なお、 消費税は指示された問題のみ考慮すること。 1. かねて借方計上されていた現金過不足 ¥5,000 の原因を調査したところ、 同額の手数料の受取りが二重記 帳されていることが判明した。 ア. 雑益 エ. 現金過不足 イ. 受取手数料 オ. 支払手数料 ウ. 現金 カ 雑損 2. 郵便局で、 郵便切手 ¥400 を現金で購入するとともに、 店舗の固定資産税 ¥32,000 を現金で納付した。 なお、 郵便切手はすぐに使用した。 ア. 受取手形 エ. 支払手数料 イ. 現金 才. 支払家賃 ウ. 通信費 カ租税公課 3. 商品 ¥180,000 を仕入れ、 代金のうち ¥30,000 は注文時に支払った手付金と相殺し、 残額は掛けとし た。 なお、当社負担の引取運賃 ¥2,000 は現金で支払った。 ア. 仕入 エ. 前払金 イ. 買掛金 才、現金 ウ. 前受金 カ. 仮払金 4. 広告宣伝費 ¥53,000 を普通預金口座から支払った。 その際に、 振込手数料 ¥500 がかかり、同口座から 差し引かれた。 ア. 当座預金 イ. 旅費交通費 広告宣伝費 オ. 支払手数料 ウ. 普通預金 カ. 受取手数料 5. 飛騨株式会社に対する買掛金 ¥290,000 について、 電子記録債務の発生記録の請求を行った。 ア. 電子記録債権 エ. 受取手形 イ. 支払手形 オ. 買掛金 ウ. 売掛金 カ 電子記録債務 6. 銀行から借り入れていた借入金 ¥800,000 の返済日になったため、元利合計を普通預金口座から返済した。 なお、 借入れの年利率は1.8%、 借入期間は当期中の9か月間であり、 利息は月割計算する。 ア. 支払利息 エ.借入金 イ. 支払手数料 オ貸付金 ウ. 受取利息 カ. 普通預金 7. 従業員の給料 ¥600,000 の支給に際して、 所得税の源泉徴収額 ¥32,000 住民税の源泉徴収額 ¥43,000 および従業員負担の社会保険料 ¥52,000 を差し引いた残額を普通預金口座から支払った。 ア. 法定福利費 所得税預り金 イ. 普通預金 オ. 社会保険料預り金 ウ. 住民税預り金 力. 給料 8.建物の賃借契約を解約し、 契約時に支払っていた保証金 (敷金) ¥360,000 について、 修繕費 ¥122,000 を差し引かれた残額が当座預金口座に振り込まれた。 ア. 差入保証金 エ. 支払手数料 イ. 修繕費 才. 支払家賃 ウ. 当座預金 カ. 受取手数料 回答募集中 回答数: 0
化学 大学生・専門学校生・社会人 約1ヶ月前 至急 有効数字について この問題だと有効数字の幅が8.35〜8.45で、実際の誤差幅は8.27〜8.51です。 有効数字は数値がどこまで信頼出来るかを示した物だと思うのですが、仮に体積が8.51だったら、有効数字で示した値の中に答えが含まれていないことになります。 これは... 続きを読む 問題1-10 電卓を用いて以下を計算せよ. (1) 2÷7 (2) 直方体の体積を求めるために, Aさんが縦の長さ, Bさんが 横 Cさんが高さを測定した. 彼らはそれぞれ10cm, 1cm, 0.1mm刻みの精度の異なったものさし定規を用いて測定してし www 10cm まい, これらの値として4.2m,234cm, 85.35cm を得た. 直方 体の体積はいくつと表示するのがベストだろうか, 数値はどこま で信用できるだろうか. 0.1mm 1 cm (2)単位を合わせると 4.2m, 2.34m, 0.8535m となるので, 4.2m×2.34m×0.8535m= 8.388198m² なる値が求まる. しかし, 4.2mという測定値は4.15 4.2 4.25を四捨五 入して得た値なので4.2m±0.05m を意味する。 つまり、この値は±0.05m (± 0.05/4.2 ×100=±1.2%) の誤差をもつ。 同様に2.34mは2.34±0.005 (誤差± 0.005/2.34×100= ± 0.21%), 0.8535m は 0.8535 ± 0.00005 (誤差± 0.00005/0.8535 × 100=0.006%) を意味す る. したがって、この値を用いて計算した8.388198m² なる体積は± 1.2% ± 0.21% ± 0.006% =±1.4% の誤差をもつ つまり (8.388198 ± 0.117435) m である. それゆえ,この直 方体の体積は8.388 0.117=8.39 ±0.12(8.27~8.51)=8.4m² と表せば十分である. 8.4 の意味は 8.35~8.45 であり、 実際の誤差幅よりも小さい. 8.4 という答ですら多 めの有効数字を示したことになる.つまり,計算結果は4.2, 2.34, 0.8535の三つの測 定値の有効数字の桁数 2, 3, 4桁のうちのもっとも小さい桁数2桁に合わせて示せばよ いことがわかる (1桁下の3桁目を四捨五入して示すのが常識) 実験データ処理におけ る有効数字の扱いは, 以上のように測定値の精度に依存する すなわち, 有効数字は測定値の精度を反映したものである. 1000's GD 01 (0 0800.0 -0.21% 12% 12% x6/180.18=0.3999(0.4000) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0