学年

教科

質問の種類

情報 大学生・専門学校生・社会人

2進数に関するご質問です なぜ「111」が「マイナス1」に、「110」が「マイナス2」になるのかがわかりません。 負の数を表す2進数を10進数に戻す方法がわかりません よろしくお願いします🙇🏻‍♀️

問 3 (FE-H30-S-01) 111 110 |101 イ ある整数値を負数を2の補数で表現する2進表記法で表すと最下位2ビッ りに関する記述として, 適切なものはどれか。 ここで,除算の商は、絶対 トは “11” であった。 10進表記法の下で,その整数値を4で割ったときの余 値の小数点以下を切り捨てるものとする。 解説 具体例を考えるとわかりやすいので、下記の 「3ビットの2進数」の例を想定します。 100 ア その整数値が正ならば3 ウ その整数値が負ならば3 → マイナス1 (▼) → マイナス2 → マイナス3 → マイナス4 イ その整数値が負ならば-3 エ その整数値の正負にかかわらず 0 2011 →プラス3 (▲) 2010 → プラス2 2001 → プラス1 1000 →ゼロ 問題文の 「負数を2の補数で表現する2進表記法で表すと最下位2ビットは “11”」 であるケースは、 上記の です。 それぞれについて、問題文の<10進表記法の下で, その整数値を4で割った 除算の商は、絶対値の小数点以下を切り捨てるものとする>を計 算して、各選択肢に当てはめてみます。 ときの余り、(中略) ここで, ア その整数値が正ならば3 マイナス1 (▼) 上記の条件に該当しません。 プラス3 (▲) 3÷4=0.75 上記★★の下線部より、0.75の小数点以下が切り捨てられて、商 は「0」、余りは「3」 <0×4+3=3> です。 したがって、本選択肢が正解です。 ●その整数値が負ならば-3 マイナス1 商は「0」、 プラス3(▲) 上記の条件に該当しません。 ・-1÷4=-0.25 上記の下線部より、 0.25の小数点以下が切り捨てられて、 ◆余りは「-1」 <0×4+ (-1)=-1>です。 したがって、誤りです。 ●その整数値が負ならば3 上記◆の下線部は、上記の下線部と同じですので、上記 工 その整数値の正負にかかわらず0 の下線部より、本選択肢は誤りです。 上記ア~ウの各選択肢で検討したように、マイナス1(▼)とプラス3(▲)の両方とも、余りが「0」 になることはありません。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0