学年

教科

質問の種類

物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

問題6、7の答えが分かりません。教えて頂きたいです、、

問題 6 正しいのはどれか。2つ選べ。 1. 電力量は抵抗にかかる電圧と流れる電流の積で表される。 ② 電子1個を IV の電界に逆らって移動させるのに必要な仕事は 1J である。 3.直列に接続された各抵抗に流れる電流量は各抵抗の抵抗値に比例する。 4 回路中の抵抗で消費される電気エネルギーは全てジュール熱に変換される。 ⑤.電気回路の任意の点において、流入する電流の総和と流出する電流の総和は常に等しい。 問題 76本の平行な長い直線の導線が図のように正六角形の頂点A、B、C、D、E、Fの位置に並べられている。これら の導線はいずれも紙面に垂直な方向に張られており、そのうち A、C、D、Eを通る導線には紙面の裏から表の向き、B Fを通る導線には表から裏の向きに、いずれも 1.0Aの電流が流れている。このとき、正六角形の中心0に生じる磁場 の向きで正しいのはどれか。 1. 上向き (OからAに向から向き) 2. 下向き (OからDに向から向き) 3. 左向き (Oから線分 BCの中点に向から向き) 4. 右向き (Oから線分EF の中点に向かう向き) 5. それ以外の向き 問題8 直径1mm、長さ10mの銅線の抵抗 [Ω] に最も近いのはどれか。 ただし、銅の抵抗率はo=1,673×10-°C とする。 BO .O OD F OE

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気の問題です。大至急解き方を教えていただけないでしょうか……。全く解き方がわかりません。どなたかどうかお願いします

問題5 (この問題では適宜対称性を援用せよ.なお, 1) 2) では Ia はIのままで計算すれば よい. 3) では Ia の表式の計算が必要となる) 極板が半径rの金属円板, 極板間距離がl の (十分理想的な) 平行板コンデンサがあるとする. いまこのコンデンサは充電中であるとする. 充電中には極板間の電場は時間変化するが, 空間的には一様 (極板間のどこでも同じ) であると仮定する.また, 2枚の極板が底面(上面・ 下面), 高さlの円柱を考えておこう. の → 1) 極板間では電流密度はすであるが,変位電流密度 J = o はすではない。極板間 で極板と同じ半径rの円板面をDとするとき をDにおいて面積分したものを,変位電 at 流La=pn as とする。 上記の仮定より Laは極板間で一様となる。変位電流 I』が上記 Jar Hola の円柱の側面に作る磁場の大きさBがB= となることを示せ. 2πr 2) 極板間の電位差を Vとする. 上記の円柱の側面におけるポインティングベクトルの大きさ Sを計算し, Sを側面にわたって積分したものを W とすると W = VI』 となることを示せ . πr² 3) 定数Cを C= com とおく。 時刻がt=0〜tのときに、電位差がV= 0〜V と変化した l とする.このとき, 2) の Wを積分すると - wa = 1/2 CV2 となることを示せ。 W dt

回答募集中 回答数: 0
1/8