学年

教科

質問の種類

数学 大学生・専門学校生・社会人

課題の(1)と(2)解き方教えて下さい

抗体検査 例(抗体検査X) 感染症 X に対して、日本人が抗体を持っている割合は40% です。 Aさんは、精度が90% の抗体検査を受けました。 このとき A さんが、陽性となる確 率、陰性となる確率をそれぞれ求めてみましょう。 ここで、 検査の精度とは、抗体を持 っていた場合に正しく陽性と判定される確率、 および抗体を持っていなかった場合に正 しく陰性と判定される確率のことです。 全確率の公式を用いると、 次のように計算され ます。 0.36 P(Aさんを陽性と判定) = P(Aさんが抗体を持っている) P (正しく判定) + P(Aさんには抗体がない) P (判定が間違う) 4 9 = + 6 1 10 10 10 10 42 (42%) 100 Q.x0.9+0.6×0.1 =0.36+0.06=0142 P(Aさんを陰性と判定) = P(Aさんが抗体を持っている)P (判定が間違う) 一本あり(陽性) +P(Aさんには抗体がない)P (正しく判定) 4 1 6 9 58 P(抗体あり)P(P1体あり = 10 + 10 10 10 100 (58%) 0,4×0,9 P(陽性) 0142 0.6 0136 抗体ない 0.9 0.86 0.1 0.1 0.4 抗体あり ではレポート課題です。 陰性 0.58 ・陽性 0.42 0.9 D. I 100 課題(1)(抗体検査Y)感染症 Y に対して、日本人が抗体を持っている割合は 0.1% です。 B さんは、精度が90% の抗体検査を受けました。 このとき、 全確率の公式を用 いて、 B さんが陽性となる確率、 陰性となる確率をそれぞれ求めてください。 (2) さらに、 抗体検査 XとYについての計算結果から、二つの検査にはどのような違 いがありますか? 比較して分かることを述べてください。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の問題です。全部分かりません。教えてください。

③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問題全部分かりません。解いていただきたいです。途中過程も記述していただきたいです

3 確率XとYを以下のように定義する。 1 W. P. 1/6 2 W. P. 16 -1 w. P. 1/5 = 3 W. P . 1/6 Y = 0 w.P. 112 4 5 w.P. 1/6 W. W. P 3/10 P 1/6 W P 1/6 (1)XとYの確率関数をそれぞれfx(水).fy(リ)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(21) Fy(y)とする。このとき、FX(0) FX (5) FY (0) FY (1) FY (2) の 値をそれぞれ求めなさい。 (3)Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5) Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1=2X+3の平均を求めなさい。 (8) Z1の分散を求めなさい。 (9) Z2 (10) Z2の分散を求めなさい。 4 (1)f(水) = -3Y+2の平均を求めなさい。 C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(t)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 X~N(50.102)であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第一四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対し7.2=2X-3Yと定義する. このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、この分散を求めなさい。 °

回答募集中 回答数: 0
生物 大学生・専門学校生・社会人

この問題全然わからないです( ; ; ) 誰か教えてください🙇

間 1 赤色と緑色の色覚に関わる遺伝子はX染色体 上にあり,日本ではこの遺伝子に原因があるために 赤と緑を区別ができない男性が20人に1人の確率で生 まれるといわれている。赤と緑を区別できない形質 は劣性である。 図は, 赤と緑が区別できない男性が 出現した家系図を示す。 ○は女性では男性であり, 塗りつぶした個体2は赤と緑を区別できない男性を 示している。また,個体2の両親および姉(個体1) は赤と緑を区別できる。 色覚多様性が結婚について 影響を与えないと仮定して,次の文章のア~エに入 る確率としてもっとも適当なものを下記の選択肢① ~⑤のうちから1つずつ選べ。 なお同じものを何度 選んでもかまわない。 ① 2 個体 1(個体 2の姉) が,赤と緑を区別でき る男性と子供をもうけ た場合,二人の間の息 子(個体 3)が赤と緑を 区別できない確率は ア)であり, 娘 (個体 4)が赤と緑を区別でき ない確率は (イ)である。個体2が, 色覚多様性 について本人および親族の情報をもたない女性と子 供をもうけた場合,二人の間の息子(個体5)が赤と 緑を区別できない確率は (ウ) であり、 娘 (個体 3 4 5 6 6)が赤と緑を区別できない確率は (エ) である。 ① 0 (0%) ② 0.05 (5%) ③ 0.125(12.5%) ④ 0.224 (22.4%) ⑤ 0.25 (25%)

回答募集中 回答数: 0
1/32