学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

図の横軸が古典派は労働量(N)[N=時間]なのにケインズ派では労働量(人)としているのはなぜですか?

できます 図表 2 供給曲線 のとき 雇いたい 過供給, きないと 3. 古典派の労働市場についての考え方 右下がりの市場の労働需要曲線(図表 21-4)と右上がりの市場の労働供給曲線 (図表21-8) を図表21-9に描きます。 古典派は,労働市場における需要と供給が 等しくなるように実質賃金率が決まると考え ます。いいかえれば, 実質賃金率が動くこと によって労働市場の需要量と供給量は等しく なります。 ですから、失業, つまり,超過供 給があっても,それは実質賃金率が (1) 1 Part Movie 134 図表21-9 古典派の労働市場 実質賃金率 失業 労働供給曲線 超過供給 (NS) H A ↓ B ENs=No 労働需要曲線 (No) CO 6 このように高いからであり、実質賃金率の下落 によって解消すると考えます。 ですから,経 済は常に完全雇用ということになります。 0- AD-AS分析・AD-AS分析 古典 (実質) 貨幣(名 いるのて N*労働量(N) 15. O 4. ケインズの労働市場についての考え方 ケインズは, 古典派の第一公準から導いた 右下がりの需要曲線を受け入れます。 しかし, 古典派の第二公準から導いた右上がりの供給 曲線は受け入れず, 貨幣 (名目) 賃金率 (W) は古典派が主張するようには自由に動かず, 下がりにくいとします。 これを貨幣 (名目) 賃金率の下方硬直性といいます。 ケインズの考えを図表21-10に描くと, 貨幣(名目) 賃金率の下方硬直性を表現する ために,縦軸は実質賃金率ではなく, 貨幣 (名目) 賃金率とします。 横軸は労働量です。 ケインズも古典派の右下がりの需要曲線は 受け入れているので、右下がりの労働需要曲 線 (ND)です。 供給曲線 (Ng)については貨幣(名目) 賃金率の下方硬直性を仮定するので,ここで はより貨幣 (名目) 賃金率は下がらな いとすると,供給曲線はWで水平の部分が 244 名目賃金率(W) では, いのでし Movie 135 不況期 図表21-10 ケインズの労働市場 せんから インズの 失業 || Ns J7 期 超過供給 W1 H A WE B ハッヒ ると言え インズ派 のではな 現実経済 のです。 • No 0 Ne 労働量(人)

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

(3)(4)がわかりません

で一定に保ったまま kPaった。 合気体に気火花をさせたのち、容器のを 27°すると. とき 生成した水の % がしてい 容器はCkPa となった る。(H100.R=8.31×10 1.01×1051760mm K・mol). A:(70.4.0 30 (エ) 97.3730 (ア) 35 36 (エ) 70 (オ) (ア) 18 24 (エ) 30 95 324 物質の二 60. 連結球 気体の燃焼〉 に最も適 るものを,それぞれ下から選べ。 片側を閉したいガラス管の内部を水で満たし銀だめの中で倒立させた。 この水銀柱の異空部水蒸気で飽和させると、1気において, 水銀柱の高さ は 730mm であった。 270における水の飽和圧は (AkPaである。 27℃で、水素が圧力30 Paで詰められた耐性容 各積2,酸素が圧力 で詰められた耐圧容 3.0L) カコックスで連結されている。温度を 容積 を開けての気体をすると、気体の全圧 33 べてなくなった)ところでピストンを止めた (状態II)。その後,さらにピストンへの圧 力を下げた状態Ⅲ)。 飽和水蒸気圧は図2に示すように変化し, 60℃においては 0.20 × 10 Paである。 容器内の液体の体積は無視できるものとして,(1)~(4)に答えよ。 ただし、水素は水に溶解しないものとする。 (1),(3)の答えは有効数字2桁で記せ。 (R=8.3×10 Pa・L/(K・mol)) ピストン 飽和水蒸気圧 [×10Pa] 1.00- 0.90- 0.80- 0.70- 0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00- 0 10 20 30 40 50 60 70 80 90100 温度 [℃] 図2 気体、 液体 状態 I 状態ⅡI 状態Ⅲ 図1 DO 25 350 (オ)6775 ( 100 [17田大 改] 結球と体の圧力> 気体は を扱い 17°C 7°C 連結部分およ 1.0,C=1, N-140=16) AR=8.31×10° Pa・L/(m・K), 飽和水蒸気圧 とする。 また、 (1) 状態 I における容器内の体積を求めよ。 思考 (2) 状態 Iにおける容器内の体積を固定したまま、温度を上げた。 容器内の水がすべて 水蒸気に変化する温度 (液体の水がすべてなくなる温度)は,次の(a)~(e) のどの温度範 囲に含まれるか。 最も適当なものを一つ選べ。 (a) 60~70°C (b) 70-80°C (c) 80-90°C (3) 状態Ⅱにおける容器内の体積を求めよ。 (d)90~100℃ (e) 100℃以上 (4) 状態Ⅰから状態Ⅲへの変化によって, 容器内の圧力Pと体積Vの関係はどのよう に変化するか。 最も適当な図を次の (a)~(e)から一つ選べ。 天体の水の ものとす (a) V に示して で各にメタン32 いて、コックをしたれ には空気 コック A 容器 B (b) + II (c) (d) (e) Ⅱ 20% 11.52 れた。 30.0(L) に保ったを開き、 時間が経 容器内の人 燃焼 A, 器 P →P [19 防衛医大 〕 にした。この容器内の [Pa〕 を求めよ。 生成した 存在 のとする。 さらに を開いたまま 063 〈理想気体と実在気体〉 「このとき,①容 内を 在する液体の水の物質量 [mol] を求めよ。 に存在する水蒸気 [mo 量 容器B内を17 よび ②容器内に存 保っ 以下の文中の空欄 に入る当を語を記せ。 62. 〈混合気体の体積〉 [14 京都府医大 改〕 実在気体の理想体からのを指して れる。ここではhp (Parは体積 P の値がよく用 PT) はK)であ 物質量(mol 図1に示すような体積と温度を自由に変えることのできるピストン付き容器に 0.15molの水素と0.20molの水を入れ, 温度を60℃に保ち、ピストンに0.50×105 Pa の圧力をかけた。このとき,水は一部液体であった(状態Ⅰ)。 温度を一定に保ったまま, ピストンへの圧力をゆっくり下げ, 容器内の水がすべて水蒸気になった (液体の水がす とかが一定の条件 Z値の力依存 多くの実在気体では、Pを 俺から大きく と、乙はからんするさらにPを大き やがて するの値が いる 大きくしたときと するの エ ウ が現れるた が強 れるためで 名古

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

ミクロ経済学の問題です! 解説も含めて教えてください🙏

問2 次の設問に答えなさい。 解答の際には答だけではなく、 導出過程も含めて示すこと。 (1) ある団子店の団子は、1本の価格が100円のとき一日の需要量は200本である。 この団子の需 要の価格弾力性が1.2のとき、 この団子を1本120円に値上げすると需要量は何本になるか。 (2) 需要の価格弾力性がつねに 0 となるような需要曲線を描きなさい。 (3)需要曲線がD=a/p (ただしa>0,p>0) で表されるとき、 需要の価格弾力性を求めよ。 (4) 需要の価格弾力性がつねに1となるような需要曲線のグラフを描きなさい。 ' 問3 Aさんは干し柿を作っている。 干し柿の生産関数は、 生産量をx (個) 労働投入量をL (人) として、x=100L.5 と表される。 以下の問に答えよ。 解答の際には答だけではなく、 導出過 程も含めて示すこと。 (1) 労働の限界生産物を求めなさい。 (2) 労働の限界生産物が逓減することを示しなさい。 (3) 生産関数を労働投入量Lについて解きなさい (つまり=.. の形に変形しなさい) (4) 機械などの固定費用が9万円、 労働者を1人雇うのにかかる人件費が1万円であるとしよう。 この干し柿の費用関数 (c) を求めよ。 (5) (4) で求めた費用関数をグラフに描きなさい。 ' • (6) (4) で求めた費用関数をもとに、 限界費用 (MC) 平均費用 (AC) 平均可変費用 (AVC)を数式で示しなさい。 · (7)限界費用 (MC) 平均費用 (AC) 、 平均可変費用 (AVC)、 (4) で描いたグラフの下 に、 横軸の縮尺を変えずに描きなさい。 その際、 費用関数との関係がわかるように描くこと。 ヒント:ACについては数学Ⅲを習っていない人には一見すると難しいかもしれないが、 例えば10 個くらい点をプロットし、それらを結んで概形を描いてみよ。 その際、 最小値がどこを通過する のかしっかり明示すること。 (8) この干し柿の短期の供給曲線を (7) で描いたグラフ中に示しなさい。

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

分光光度法 色素吸収のスペクトル ブロモフェノールブルー669.96g/mol メチルオレンジ327.33g/mol ①.ブロモフェノールブルー、メチルオレンジそれぞれについて最大波長におけるモル吸光係数を計算せよ ②混合試料スペクトルから各色素濃度を計算せよ ※混合試料... 続きを読む

考察 1. 光 2. 3. 目的 テーマ⑤ 分光光度法: 色素の吸収スペクトル 色のある化合物はそれぞれに固有の吸収スペクトルを持つので、 最大吸収波長と最大吸収波長にお けるモル吸光係数で見分けることができる。 本実験では異なる色素の混合溶液の紫外可視吸収スペクトルから個々の色素の含有濃度を定量分 析する。 試薬と器具 1. 紫外可視分光光度計 2.ブロモフェノールブルー 669.96g/mol 分子量 3. メチルオレンジ 327.33g/mol " 4.ブロモフェノールブルーとメチルオレンジの混合溶液 実験作 1.メスピペットを用いて、 ブロモフェノールブルー原液 (100 mg/l)1mlを10ml メスフラスコに とり、H2O を加えて、 全量を10ml とする。 その溶液を下記の比率で希釈した濃度の異なる5 種類の溶液を作成する。 そのうちの約4ml を駒込ピペットで石英セルに入れる。 求め ブロモフェノールブルー 1ml 2 ml 3 ml 4ml 5 ml H2O 4ml 3 ml 2ml 1ml 0ml 2.メスピペットを用いて、 メチルオレンジ原液(100mg/l) 1ml を10mlメスフラスコにとり、 H2O を加えて、全量を10ml とする。 その溶液を下記の比率で希釈した濃度の異なる5種類の溶液 を作成する。 そのうちの約4ml を駒込ピペットで石英セルに入れる。 中の メチルオレンジ H2O 1ml 2ml 3ml 4ml 5 ml 4ml 3ml 2 ml 1ml 0ml Nam Mom 3. 紫外可視分光光度計の石英セルに H2O を入れて奥のセルホルダーにセットする。 (ブランク) 上の12で調整したブロモフェノールブルーとメチルオレンジの濃度の異なる溶液の紫外可 視スペクトルを測定する。 4. ブロモフェノールブルーとメチルオレンジのそれぞれのスペクトルから、最大吸収波長と最大 吸収波長における吸光度を読み取り、横軸に濃度を、 縦軸に吸光度をプロットして、グラフを 作成する。 5.ブロモフェノールブルーとメチルオレンジの濃度未知の混合試料の紫外可視スペクトルを測 定する。 26

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

マクロ経済学です。(5)からの求め方がわかりません。 教えてください🙇🏻‍♀️🙇🏻‍♀️

問題6(答えだけでなく、計算式も示すこと。) 動学化された総供給曲線、動学化された総需要曲線、インフレ期待形成がそれ Π=5+Y-8 π = π° + Y - YF 動学化された総供給曲線 元 = 5 (Y-Y-1) 動学化された総需要曲線 TCⓇ = πC -1 インフレ期待形成 π:インフレ率 期待インフレ率 (今期においては、 π°= 5 とする。 Y : 完全雇用GDP (ここでは常に Y = 8 とする。) Y, : 1 期前に実現したGDP (今期においては、 Y-1 = 6 とする。) 1 : 1 期前に実現したインフレ率 (1) このようなインフレ期待形成の方法は何期待と呼ばれるか。 (2) 今期の動学化された総供給曲線をグラフ上に表わせ。 (縦軸と横軸の 変数を明示) [アル=ケ-3 カレン5-(4-6) |TV = 11-Y) (3) 上の (2) で使った図の中に、 今期の動学化された総需要曲線をグラ フ上に表わせ。 (縦軸と横軸の変数を明示) (4) 今期の均衡 GDP と均衡インフレ率を求めよ。 (5) 次の期において、 期待インフレ率はいくらになるか。 (6) 次の期において、 動学化された総供給曲線はどのようにシフトする か。 このシフトを図で示せ。 (7) 次の期において、 動学化された総需要曲線はどのようにシフトする か。このシフトを図で示せ。 3) 次の期の均衡 GDPと均衡インフレ率を求めよ。 次の期に経済が完全雇用に達したかどうかを確認せよ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こちらのD>0までは分かったのですが、なぜ全ての実数aに対してD>0が成り立つ条件を考える時に図のような直線を元に考えるのでしょうか。また、ここで言う全ての実数aに対して、とは具体的にどういうことなのか分かりません。教えていただける方、よろしくお願いいたします。

Evid 53 面積 (2) xy平面上に,放物線C:y=x2-5x+6と直線l:y=kax-a-5aがある ただし, α, k は実数の定数とする. (1) すべての実数a に対して, lがCと異なる2点で交わるような定数に (2) (1)で求めた範囲にあって, Cとしで囲まれる図形の面積Sがαによら の値の範囲を求めよ. (一橋大) (解答) (1) |y=x2-5x+6 |y=kax-a²-5a ①②からyを消去して整理すると, x²-(ka+5)x+(a²+5a+6)=0 =4(k-2) (6k-13) であるから, D2<0より、 ③の判別式をDとすると, D₁ = (ka+5) ²-4 (a²2+5a+6)=(k²2—4)a²+2(5k-10)a+1 であり、「すべての実数a に対して, lがCと異なる2点で交わる条件」は, 「すべての実数a に対して, D1 > 0 が成り立つ条件」 x=α すなわち, 「すべての実数a に対して, (k²-4)a2+2(5k-10)a+1>0が成り立つ条件」 を考えればよい. ここで, f(a)=(k2-4)a2+2(5k-10)a+1 (=D1) とする. (ア)²-4<0のとき f(a) f(a) は上に凸の放物線となり、条件を満たさない。 (イ)²40 すなわちんく - 2,2くんのとき f(a) のグラフは下に凸の放物線である . f(a) のグラフが横軸と共有点をもたなければよいか ら, f(a) = 0 の判別式を D2 とすると,D2<0で あればよい, よって, -=(5k-10)²-(k²-4).1 =4(6k²-25k+26) 2<k<lo (k<-22<k を満たす) (ウ)k=2のとき C x=B f(a) = 1 であるから、すべての実数」に対して A (ア)²-4<0のとき f(a) (イ) k²4>0のとき f(α) を平方完成して, 頂点に注目して考えるこ ともできるが,平方完成の計算が大変なので、 判別式を利用した方がよい > a f(a) →0 O (ウ) k=2のとき k= f 以上よ (2) ③ C である が成り S S (1 解説 「6 挑戦し 試本番 本門 るが、 とき であ て扱 れを 文系

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

まだ見たことない化学の問題で、困っています。 回答できる方、ご協力のほどお願いしたいです🙇🏻‍♂️と

上部に小さな穴が2個開いた円筒形のしょう油の容器がある。 容器の容量は110cm²で、その中に 10cm3 のしょう油が入っている(図1)。 穴の1個を指でふさいでから、この穴が上になるようにして 容器を 90 度傾けたが、中のしょう油は出てこなかった。 このときの容器の温度は280K であった。 以下の問いに答えなさい。 なお、 しょう油の重量は容器内部の空気の圧力に影響を与えないものとし、 しょう油の蒸気圧も無視できるものとする。 また、室内の温度と圧力は一定であり、 大気圧 1.01x 105Paのもとで行ったものとする。 (1cm²=1mL) 図1 容器にしょう油 が入った状態 図2 穴の一つを指で ふさいだ状態 図3 穴の一つをふさいだまま 90度傾けた状態 (1)穴の1個を指でふさがれたまま容器が正立している状態(図2)で、 容器内部の空気の圧力はどのく らいか。 有効数字3桁で答えなさい。 (2)穴の1個を指でふさいだまま容器を90度傾けた (図3)。 このときにしょう油が外に出なかった現 由を簡単に説明しなさい。 (3) (2)に続けて、ヘアドライヤーからの温風を容器に吹きかけて、 容器の内部の温度を300K にした このとき、しょう油の一部が容器の外に落ちた。 落ちたしょう油の体積を整数値で求めなさい。 なお しょう油の体積の温度による変化は無視できるものとする。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(6)と(8)を教えて頂きたいです。

近軸光線と ためには、鏡の高さはいくら以上なければならないか. [4] 光線が平行平板ガラスを透過するとき, (1) 入射光線と透過光線が平行であることを示せ . [3] 身長 170cm の人が垂直に置かれた鏡の前に立つとき,自分の全身の姿を見る ガラスの屈折率をn, 板の厚さをd,入射角を0とすると, 入射光線と透過 (2) 光線のずれの距離 ▲は A = d cos 0 Vn2 - sin20 光源 -a→o となることを示せ . [3] 図6.15のように,直角に置かれた2枚の鏡がある. それぞれの鏡から距離 α, もの位置に置かれた光源の像を求めよ. の全面積を求めよ.ただし, 水の屈折率を 1.33 とする. [6] 水深 2.75m のプールの底に点光源を沈めた. 光を水面から放出している水面 [7] 半径10cm の水晶の玉の表面から8.0cmの深さのところに,直径 5.0mm の 球形の不純物がある. この不純物を真上から見たとき, 不純物球は表面からどれだけ の深さに、どれくらいの大きさに見えるか.ただし, 水晶の屈折率を1.54 とする. [8] 焦点距離 12 cm の凸レンズと凹レンズの前方に,それぞれ高さ 1.0cm の物体 を置いた。レンズから物体までの距離が次の場合について, 像の① 位置, ② 高さ ③ 実像 虚像の別,および正立・倒立の別を求めよ. (1) 24cm (2) 6cm [9] 凸レンズと凹レンズの結像の公式を, a を横軸, bを縦軸にとってグラフで描け. MG 15 sin 0 眼 ただし, 光線は

回答募集中 回答数: 0
1/5