学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)がわからないです。 やってるのですがここの単元はほんっとに基礎からわかりません、 暇な方、時間がある方詳しく回答お願いします。

N--ト OOO00 重要例題 70 ガウス記号とグラフ [a]は実数aを超えない最大の整数を表すものとする。 (1) [2.3], [1], [ーV2]の値を求めよ。 (2) 関数 y=[2x] (-1Sx<1)のグラフをかけ。 (3) 関数 y=x-[x] (-1<x<2)のグラフをかけ。 あ nSxくn+1ならば [x]=n が成り立つ。これを場合分けに利用する。 (2) -1SxS1より -2<2x<2であるから, 幅1の範囲で区切り, -2<2x<-1, -1<2x<0, 0<2x<1, 1<2x<2, 2x=2 で場合分け。 (3) -1S×S2から, -1<x<0, 0<x<1, 1<x<2, x=2 で場合分け。 (9 指針 実数xに対して, nを整数として 遊の大 [2.3]=2 [1]=1 (1) 2<2.3<3であるから 1S1<2 であるから -2<-/2<-1であるから (2) -1Sx<1から 16天2 12.3 t - +T 解答 る -2-1 0 1 2 3 * -2<2x<2 [10-1.e.1-] (8) -2<2x<-1すなわち -1<x<- 1 のとき y=-2 → (2) 1- こY4直送 2- --sx<0のとき 032x<1すなわち0Sxく のとき -1S2x<0すなわち ソ=ー1 2 100 1O 1 X 152x<2すなわち - ハ×<1 のとき 1 ソ=1 -1 2 すなわちx=1 よって,グラフは右の図 のようになる。 (3) -1Sx<0のとき [x]3D-1から 0Sx<1のとき [x]30 から 1Sx<2のとき [x]3D1から [x]=2 から よって,グラフは右の図 のようになる。 2x=2 のとき ソ=2 -2 ソ=x+1 3 ソ=x 1 ソ=x-1 x=2のとき ソ=2-2=0 -1 0 1 2 x ガウス記号と実数の整数部分 実数xが整数nと0冬か<1を満たす実数pを用いてx

回答募集中 回答数: 0