学年

教科

質問の種類

物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。図aから図bへの書き換え方がわかりません。どなたか教えていただきたいです!

必闘79.〈音波の性質) 図1上図のように原点Oにスピーカーを置き, 一定の振幅で、 一定の振動数fの音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上(x>0) の各点で圧力pの時間変化を測定する。 ある時刻において, x軸上(x>0) の点P付近の空気の圧力か をxの関数として調べたところ, 図1下図のグラフのようになっ た。ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力を poとする。 圧力かが最大値をとる x=Xo から,次に最大値をとる x=xs までのxの区間を8等分 し、, 2,…, Xxと順にx座標を定める。 (1) x」からx。 までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力pの時間変化を調べたところ, 図2のグ ラフのようになった。圧力かが最大値をとる時刻 t=Do から, 次に最大値をとる時刻 t3Dts までの1周期を8等分し,丸, ね, ……, pols ちと順に時刻を定める。 (2) ちからなまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように、原点0から見て点Pより遠い側の位置に, x軸 に対して垂直に反射板を置くと, 圧力が時間とともに変わらず常 年 に加となる点がx軸上に等間隔に並んだ。 (3) これらの隣接する点の間隔 dはいくらか。 なお, 音波の速さ スピーカー p pos X34 X5 X7 X8 %6 点P付近の拡大図 図1 ts t ts toち Ttsty ts t 図2 反射板 図3 をcとする。 (4)(3)の状態から気温が上昇したところ, (3)で求めたdは増加した。その理由を説明せよ。 [12 東京工大)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

新高2です。⑸から⑺の問題がわかりません。教えていただきたいです!

o77. (平面波の反射·屈折 干渉) 段差と壁面をもつ大きな水槽に水が入っている。この水 捕では、図上部の断面図で示したように, 壁面からの距離 水面 がL以上である領域Aでは水深が2んであり, 距離がLよ り小さい領域Bでは水深がんである。 図下部は, この水槽 を真上から見た図であるが,図の破線で示したように, こ の水深が変わる境界面は, 壁面と平行である。領域Aから, 境界面に向かって速さ り, 波長入の平面彼が入射し, 境界 面で屈折され,さらにこの屈折波が壁面に向かう。 ただし, 波の振幅はんに比べて十分に小さいとする。 図下部の斜め の実線は,入射波における波の山の波面を表しているが, この波面と境界面のなす角は45° であった。なお, 領域Bでの屈折波の波面や壁面で反射さ れた反射波の波面は問題の都合上かいていない。境界面での反射は無視でき, 波の速さは, 水深の平方根に比例するとして, 次の問いに答えよ。 (1) 領域Aでの波の周期Tを求めよ。 (2) 領域Bでの波の速さ が'をひを用いて表せ。 (3) 領域Aに対する領域Bの屈折率nを求め,領域Bでの波面と境界面のなす角度『を求め 境界面 壁面 2h hl 断面図 入射波の波面 真上から 見た図 L- 領域A 領域B よ。 (4) 領域Bでの波の周期 T' と波長/を求めよ。 境界面で屈折された波は, さらに進行し壁面で反射された。ただし, 壁面での反射は自由 端反射であるものとする。 屈折波とこの反射された波が干渉し, 定在波(定常波)が観測さ れた。定在波を観測したところ, 境界面と平行に線状に節が観測されたが, ちょうど境界面 上にも節が観測された。 また, 領域Bには, 境界面での節以外に6本の節の線が現れた。 (5) 壁面において, 壁面と平行に進む波が観測された。この波の波長入。と速さ。を求めよ。 (6)境界面での節が, 壁面から数えて7番目の節であるという事実を使って, Lを入で表せ。 (7) 反射波が境界面を通過して, 領域Aにも定在波ができた。 領域Bの場合と同様に, 定在波 の節が境界面と平行な複数の線を形成する。 この場合の隣りあう線の間の距離dを入で表 せ。 (19 埼玉大)

回答募集中 回答数: 0