学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理のエッセンスp.44-45のEX3で、床に摩擦がある時と無いときでBが床から受ける動摩擦力が変化するのがよく分かりません。 詳しく教えていただきたいです。

IV 運動の法則 45 F 図AはBから動摩擦力 μmg を左向きに受 m ○m けるので 糸 A man=ー Lmg . aA=ーPg 仮りの姿 動摩擦力 M 一方,Bはその反作用を右向きに受けるので 4mg ) M mO B Map=4mg * ap=Lmg M ●M 動摩擦力の反作用 e Bの式を(m+M)ag= で始める人が非常に多い。Aが乗っていて重いと いう意識からなのだろうが, 運動方程式の質量の項は “注目物体の質量 だった! Bに注目しているからそれは Mなんだ。 Bに対するAの相対加速度αは α=an-ap=-m+M B上で止まるのは相対速度が0になるときだから のm F M M M F m 箱 Mg 44 上の図(b)および(d)で, m と面との間に摩擦があり,動摩擦係数をμとした ときの加速度aを求めよ。 Mu。 0= o+at より t= (m+M)μg Mv。 2(m+M)ug G相対加速度 を活用したい また, 0°-v%=2αl より 1=- 45* 質量 mのAとつり合わせるためにはBの質量 M。はいくらにすればよいか。 次に, Bの質量を M としたところ, Bが下がった。Aの加速度aおよび 糸Bの張力Sを求めよ。 2つの滑車は軽いものとす 定滑車 糸B ここで, oは相対初速度(3Dvo-0) として用いている。なお, AがB上で止 まった後は動摩擦力はなくなり, 2つは一体となって, ひo+aat=0+apt=_" の速さで床上をすべる。 -Vo 糸。 m+M 動滑車 る。 -糸Y ■B Miss 1= vot +ante としてはダメ。 Q^はB上での動きでなく床に対する動き を表しているからだ。運動方程式の加速度は地面に対するものだった! m 製トク Aの動きと比べると動滑車の動きは半分。 Sよっと一言 床に摩擦(動摩擦係数μ)があると, Bが床から受ける動摩擦力は いくらになるか分かるかな? μMg ? それともμ(M+m)g? この場合はμ(M+m)gが正しい。頭がこんがらがりそうだね。 動 摩擦力 μN は床からの垂直抗力Nで決まり, 上下方向では力のつり 合いが成りたち, N=(M+m)gとなるからなんだ。 床は2物体分 の重さを支えなければならない。一考えてみれば当然のことだね。 つまり, Aに比べてBは動く距離, 速さ, 加速度すべてが半分になる。 46* 質量 MのAに質量 m, 長さ1のロープを取り付 け,なめらかな床上をFの力で引っぱる。付け根か らx離れた位置でのロープの張力 Tを求めよ。 M X、 m F A utugS さあ,運動方程式も最終段階だ。次のケースで実力を試してみよう。 Q&A EX3 滑らかな床上に置かれた質量 Mの板B がある。質量 m の小物体 Aが速さ で飛 び乗り,Bの上を滑った。 それぞれの物体 Q この場合 Aは動摩擦力を左向きに受けるのは直感的に分かります。でも, 一般に,動いている板から受ける動摩擦の向きはどのように決めるのですか。 A 速度の向きと逆というのは固定面のときのこと。板が動いているときは, 板 に対する動き(相対速度)と逆向きと判断する。 もし, 相対速度が0なら静止摩 擦の話になる。動摩擦か静止摩擦かは, 地面に対する動きでなく, 接触面が滑 り合うかどうかで分かれるんだ。 m A の加速度を求めよ。また, AがBに対して 止まるまでの時間さとB上で滑る距離!を 求めよ。A, B間の動摩擦係数をμとする。 B M

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

これが全く分からないのですが教えていただけないでしょうか

問題:ロケットは、燃料を燃やしてできる燃焼ガスを高速度で噴射しながら加速する。 この加速の仕組み ロケットを本体と燃料からなる質点系として考えてみよう。ロケットは連続的に燃焼ガスを噴出して飛行 るが、ここでは初め At の間にどれだけ物理量が変化するか離散的に考え、後で連続極限 At →0 を取 ことにする。また、ロケットは直線的に運動しているとして1次元的に扱い、 ベクトル表記はしなくても良い 時刻[s]において質量 m(t) [kg] で速度 v(t) [m/s] で飛行しているロケットが、 「単位時間あたり質 b>0[kg/s] の一定の割合」で燃焼ガスを後方に「一定の大きさVの相対速度」で噴射しているとする。 ここでVはロケットと燃焼ガスの相対速度の大きさであり、ロケットの進行方向を正の方向とした時、 焼ガスの速度はv(t) -V で表すことができる。 短い時間 At の間にロケットは質量 bAt の燃焼ガスを後方に噴射しているので、 時刻t+ Atにはロ ケットの質量はm(t+ At) =D m(t) + Amになり(ただし燃焼ガスを噴射するので Am = -bAt < 0)、ロ ケットの速度は v(t+ At) =D v(t) + Avになるとする。 (注:この問題ではロケットは宇宙空間を飛んでいるとし、地表で働く一様な重力は考えなくて良い。) (1)燃料の噴射前後(時刻とt+ At の間)でこの質点系の運動量が保存することを式で表そう。 エンジンの中で 噴射するガスの 反作用で加速 燃料を燃やしてできる 燃焼ガスを噴射 物理学I(精機)第12回 レポート問題 1 問題(つづぎ): (2)(1)で得られた式に対し、 Amと Av は小さい量なので、 その積 AmAv = 0 という近似を用いることで、 m(t)Av + VAm%3D0 の関係が得られることを示せ。 (3) At の時間が経つ間のロケットの質量の変化は Am でのロケットの質量の平均の変化率は ーbAt <0 で与えられることから、 At の時間内 Am =DーDD<0 At と表現される。At →0 の極限を取ることでロケットの質量の変化を表す微分方程式を導け。 そして、 初期条件としてt3D0[s] でm(0) =D mo [kg] を与えることで、 初期条件を満たす特解 m(t) を求めよ。 ただし、この問題で扱う時間の範囲内ではロケットは内部の燃料を全て噴出するほど時間は経ってい ないとする。 (4)(2)で示した式を At で割って At → 0 の極限を取ることで、 速度vの変化を表す微分方程式を求めよ。 (5) ロケットがt=0[s] で静止していた(v(0) %3D 0)として、 (4)で求めた微分方程式の初期条件を満たす 特解 v(t) を求めよ。

回答募集中 回答数: 0
1/2