学年

教科

質問の種類

数学 大学生・専門学校生・社会人

問題11についてです。 割合の応用問題なのですが、個数の求め方が分かりません。解説にはAの青ボールを移動させても比率が変わらないことからBの赤は2×2で4になると書いてあります。なぜそうなるのでしょうか。 式のたて方から教えていただけると嬉しいです。

問題10 問題 11 割合の応用 1 100点満点のテストを3回受けた。 1回目の点数は3回のテストの合計 点の35%に相当し、3回目の点数の0.7倍であった。 最も点数が低 かったのは何回目のテストか。 2 AとBの2人に個数が31となるようにボールを分配した。 ボールは 赤、青2色あり、 赤と青の比率は4:1である。 続いて、 Aの青ボー ル2個をBの赤ボール半分と交換したところ、 Aのボールはすべて赤 となり、AとBの持っている個数の比は3:1のままであった。 この とき、ボールは全部でいくつあるか。 (DA JA -B (010 (b)0 あか あお 2 12 成分AとBを1:2で混ぜた薬Xと3:5で混ぜた薬Yを同量混ぜて薬Z を作った。 Zに含まれる成分Aの割合は何%か。 解答の%は小数点第 1位を四捨五入すること。 3 ある畑A・Bでは、それぞれりんごの品種PQRを生産している。 2つの畑でそれぞれの品種が占める割合は、 AではPが60%、 Qが 40%、BではPが50%、 Q35%、 Rが15%であった。 また総生産 量は畑Aが60%、 Bが40%である。 このとき、2つの畑のりんごPの生産量合計は総生産量の何%か。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0