学年

教科

質問の種類

物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

どうしてこうなるのか分かりません! わかる方解説お願いします!!

22 24 22 2 74 思考力・入試問題 規則性の問題 平面上に, はじめ, 白の碁石が1個置いてある。 次の操作をくり返し 行い、 下の図のように, 碁石を正方形状に並べていく。 1回目 の操作 【操作】 すでに並んでいる碁石の右側に新たに黒の碁石を2列で並べ, 次に, 下側に新たに白の碁石を2段で並べる。 OOO ○○○ OO 2回目 の操作/ このとき、次の問いに答えなさい。 =3+2n−2 =2n+1 OOOOO ●○○○○ (1) 黒の碁石の個数を求めなさい。 3+2 (11) ●OOOO ●●●○○ ●●●○○ 4回目の操作で,新たに並べる碁石について, 2x7 (2) 白の碁石の個数を求めなさい。 2x9 3 高校につながる 問題を解いてみよう! 13回目 の操作/ 4 1回目 - 3個 2 -5 7 9 OOO0OO0 OOOOOO● ●○○○○○○ ●●●○○○○ OOOOOO 18 個 回目の操作を終えた後に,正方形状に並んでいる碁石の1辺の個数を, nを使った式で表しなさい。 [2020 岐阜 ●●●●●○○ ●●●●●○○ 14 2nH 4回目 の操作/ 規則性の問 「変わるもの いもの」を見 いよ。 この問題では、 作をすることに 2列と下側の "つしっかり読 とらえよう。 が増えてい程式は, わからない場 に図をかいて う。 はじめに ・・・のそれぞれ 正方形状に 石の1辺の みよう。 規則性を見 自分で表を い方法だよ 碁石の個数) の碁石の個数) の総数) からつくったも E での結果を利用し う。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

1体1整数9(1)です。 黒線部でx y z が正の数であることから不等式を作っています。しかし、xyzが正の整数であることを用いればより厳しい条件が出ると思い、1/x + 2/x ≦ 3 と① も用いて条件を出しました。しかし、解答の方が強い条件です。なぜ、そうなるのでし... 続きを読む

9 不定方程式/範囲をしぼる 正の整数工y.zが21+2+2=2,xyzを満たすとき、 3 I y Z (1 Zの値の範囲は Szó である。 (2) 与えられた条件を満たす整数x,y,zの組をすべて求めよ. (阪南大 (2) 不等式を作って範囲をしぼる 本間のポイントは「2はあまり大きくなれない」というこ 例えばぇ=10にはなり得ない。なぜならば、このとき10yx より 1/12/01/12/1/10 とな 3 3 6 1/12/01/10+10+10=1/10 <2になるからである。大小はオマケの条件にも見えるか f f S うな繊論をすることがポイントの問題であり、大小設定が鍵を握っているとも言える。 範囲が決まれば有限個 範囲が決まると、その中に整数は有限個しかない。 1つずつ代入 ることで解決する場合が多い。 エ ■解答譚 1+2+3=2 y 免全てが同符号の数から成立 (1) より 1231212.10/20 2=+ エ 2 3 1 afe 2 ひー+ 2 1s1であるから. ①より 2 2 3 6 2 2 3 また、①+20 より多く 2 25-1/20 25- <2 253 z=2のとき より 21/2+2=1/12 2y+イエ=エリ y 2≤2 りは正 よって、2≦253(リーヌ) ※1日は回答です。正の冬用いると下出るの (2) z=3のとき, (1) の23までの等号がすべて成り立つから. -367 (330) x=y=2=3 お支 2xyをかけて 文で述べた xy-x-2y=0 :. (x-2)(y-4)=8 より20 -4だから (x-2y-4)=(8,1),(4,2) :. (x, y)=(10, 5), (6, 6) 答えは、(x,U,z)=(3,3,3), (10,5,2),(6,62) 22

回答募集中 回答数: 0