学年

教科

質問の種類

情報 大学生・専門学校生・社会人

ExcelのVBAの問題なのですが、コマンドボタンのデータ参照の④の問題が分からないので、教えてください。

総合演習ⅡI (2) コマンドボタン オブジェクト名: 参照 表示文字列 : データ参照 クリックしたら以下の処理をするイベントプロシージャを記述 ① テキストボックス英語、数学、国語の文字列に空欄文字 ( ''')を代入 ② Range 型オブジェクト変数結果を宣言 ③ ワークシート試験結果の受験番号データからテキストボックス受験番号の文字列を完全一致で検索し、 検索結果を結 果に代入 ④ 結果がNothingの場合はメッセージダイアログ (メッセージ : 該当データがありません、 ボタン : OKのみ、 アイコン : 警 告)を表示し(戻り値は使用しない)、 それ以外は該当データの英語、数学、国語の得点 (対象セルの値を参 照) をテキストボックス英語、数学、国語の文字列に代入 ※ヒント: Offsetを用いて対象セルを指定 オブジェクト名: 更新 表示文字列 : データ更新 クリックしたら以下の処理をするイベントプロシージャを記述 ① Range 型オブジェクト変数結果を宣言 ワークシート試験結果の受験番号データからテキストボックス受験番号の文字列を完全一致で検索し、 検索結果を結 果に代入 結果がNothingの場合はメッセージダイアログ (メッセージ : 該当データがありません、 ボタン: OK のみ、 アイコン : 警 告)を表示し(戻り値は使用しない)、それ以外はテキストボックス英語、数学、国語の文字列を該当データの英語、 数学、国語の得点 (対象セルの値)に代入 入試データ ※ヒント: Offsetを用いて対象セルを指定 受験番号 英語 JMS001 89 JMS002 58 JMS003 82 JMS004 98 JMS005 89 数学 69 96 60 77 88 国語 73 73 79 89 94 検索する受験番号 英語の得点 70 JMS003 数学の得点 80 データ参照 国語の得点 90 データ更新 × Microsoft Excel データがありません _OK

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

テスト勉強のための練習問題です自分の解答が正しいかわからないので解答の手順も含めて解答をお願いします。

■問題1 ある工場を考える。 設定は次の通りである。 この工場では、労働者を雇い製品を組み 立てる機械を用いて製品を生産する。 この工場には、性能が異なる機械 A、B、C、 D がそれぞ れ1台あるとして、 それぞれの機械は労働者1人が操作する。 機械の性能は次の通りであるとし よう。 ● 機械 A: 1 時間あたり20個作ることができる ● 機械 B: 1 時間あたり 50個作ることができる ● 機械 C: 1 時間あたり100個作ることができる ● 機械 D: 1 時間あたり 200個作ることができる 工場の1日の稼働時間は9時から17時までの8時間であり、労働者が1日に労働できる時間は 最大で8時間までとする。 この工場では、労働者を何人か雇用して、その人たちに合計でL時間 働いてもらうとする。 (a) 労働者を雇って、性能の良い機械から順に使用してもらうという形で効率的な生産を行うと する。このとき、この工場で1日に作ることのできる製品の生産量と労働投入量Lの関係 を表す生産関数 y=f(L) の式を導出しなさい。 (b) 労働者の給料は時給制で、 1時間につきw=1200円を工場が支払うとしよう。 また、機械の 導入費用は4台セットで一括で24000円であったとしよう。 機械の導入費用を固定費用とし て、この工場の費用関数 C'(y) の式を導出しなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0