学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

分からないので教えて欲しいです🙇‍♀️

Entrance Exam 否定表現 1. almost 2. I( 1()に入れる最も適切な語句を1~4から選びなさい。 1. I don't think David would make a good leader because he can ( difficult circumstances and tends to give up too quickly. 2. extremely 3. hardly ) go to karaoke, I go only once or twice a year. ) be expected to act honorably in 4. neither (明治大) (芝浦工業大 4. never 1. often 3. Unfortunately, ( seldom ) of the 1. a few 2. few 3. ever passengers escaped injury. 3. many (大阪学院大 推) 4. much 4. ( ) children are born with musical talent. (日本大) 1. none of 2. not all. 3. not every 4. no one 5. ( 2. No 1. as far as 2. far from ) of the workers accepted the director's proposal to cut bonuses. 1. Not 6. The future of English society looked ( 7. I didn't like the food at that restaurant. It was (. (東海大 3. Never ) promising in the 1840s. None (立命館大) 3. for far 4. too far ) delicious. (福岡大) 1. anything but 2. nothing but 3. without 4. out of 8. He was so drunk that he could ( ) walk. (大阪学院大) 9. 1. all 1. able 2. unable This train doesn't stop at ( a few 3. hard 4. hardly ) station. 大阪商業大推) 2. 3. little 4. every 2. few 12. " Can 10. The latest model of this mobile phone is ( 1. not seldom 3. all not 11. Before I watched the documentary, I knew ( 1. little à you come to the party tonight?" "( 1. Yes, I can ) easy to use. (獨協大) 2. not necessarily 4. ever not 3. seldom ) about life under the sea. 4. hardly (東京工科大) ). I have a lot of homework." (拓殖大) 2. Yes, I do 3. No, I'm afraid not 13. Japan has ( 1. a little 2. few 4. No, I hope not ) oil and therefore is almost entirely dependent on imports. (センター) 3. little 4. small

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0