学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

至急お願いします!

次の1~5の日本文の意味を表すように、 語を補いなさい。 )内の語(句)を使って、下線部分に適切な英 1. 彼女は給油するためにガソリンスタンドに立ち寄った。 (car, fill up) 《英語》She stopped 2. 私は日本に私の服を送るための箱を探している。 (clothes, box, Japan, send) 《英語》I am looking for 3.彼はファイナンシャルプランナーになるために勉強している。 (become, financial, study) 《英語》 He is 4. 彼女は子供に料理を教えることのできる場所を借ります。 (cooking, kids, place, teach) 《英語》 She rents 5. キャシーは彼に仕事を引き継いでもらいたがっていた。 (business, take over) 《英語》 Cathy wanted at a gas station. planner. Ⅱ 次の英文を読んで、 下記のペアワークやグループワークに取り組みましょう。 ◎ CD 70 DL 70 A good work-life balance enables us to divide our energy between our home and work priorities. It also enables us to reduce stress and anxiety both at work and at home. In an effort to strike an optimum work-life balance, I struggle to find anything like a balance between work and doing something for myself at all. I want to travel to places in Asia to diversify my life. I hope to stay physically and mentally fit. I hope that my life will not always be as busy as it is right now. Notes 1. enable O to do 「○が…することを可能にする」 2. divide ○ ○ を分ける」 3. priority 「優先事項」 4. reduce 「○ を減らす」 5. optimum 「最適な」 6. struggle to do 「・・・ しようと努力する」 7. at all 「とにかく」 8. diversify ○ ○ に厚みを持たせる」 9. stay C 「Cのままでいる」 Pair/Group Work ペアまたはグループになって質問をしたり、答えたりしましょう。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)について どうゆう手順でとき進めて行くんですか? また、なぜδは最小の値をとるんですか? 図とか想像出来ていないので教えて欲しいです。

48第2章 関数 (1変数) 基本 例題 030 E-8 論法による等式の証明 次の等式をE-8論法を用いて証明せよ。 (1) lim (5x-3)=2 (2) lim (x2+1)=2 x-1 1 基本 指針 (1) とも, 左辺の極限値は存在して, 右辺と一致することは,すぐにわかる。 そのこい E-8論法を用いて証明せよとあるから、関数の収束の定義を今一度確認しておこう。 定義関数の極限 (E-8論法 ) 任意の正の実数に対して、 ある正の実数8 が存在して、f(x)の定義域内の 0<x-a|<8であるすべてのxについて|f(x)-α|<e となるとき、関数f(x)は 12203054 [oclx-alk8 Hon-alc x→αでαに収束するという。 ⇒ (1)証明すべきことは、「任意の正の実数に対して、ある正の実数が存在して 0<|x-1|<8 であるすべてのxについて (5x-3)-2|< が成り立つ。」である。 基本 例題 031 €18 下の指針の定理について, (1) 下の関数の極限の (2) 下の, 合成関数の極 (5x-3)-2|=5|x-1|により, | x-1 <8ならば5|x-1|<5δ であることを利用すれば、 い。 (2)証明すべきことは、 「任意の正の実数に対して、 ある正の実数δが存在して 0<x+1|<8 であるすべてのxについて | (x2+1)-2|<e が成り立つ。」 である。 |(x+1)-2|=|(x+1)(x-1)|=|x+1||x-1|である。 x-1 であるから,xが-1に い状況のみを考えればよく、例えばx+1|<1 すなわち-2<x<0であればx-1|<37 ある。 299- 指針定理 関数の極限の性質 関数f(x), g(x) お したがってδを1より小さくとるとき,x+1| <δであれば | x+1| <1であり、このとき |x2+1-2|=|x+1||x-1|<3|x+1| <38 となる。 これを利用すればよい。 [CH|A|R|T-8 論法が先,8が後 解答 (1) 任意の正の実数e に対して, 8= m とする。 d= 5 このとき,0<|x-1|<8=1であるすべてのxに対して 与式のxに1を代入す れば極限値が2である ことはすぐにわかる。 |(5x-3)-2|=5|x-1|<58=e よって lim (5x-3)=2 (2) 任意の正の実数』に対して,=min {1, 2} とする。 このとき, 0<|x+1|<8であるすべてのxについて、 |x+1|<1であるから x→1 |x-1|=|(x+1)-2|≦|x+1|+2<1+2=3 また,x+1|< であるから |(x2+1)-2|=|x+1||x-1|<13×3=e よって lim (x2+1)=2 X-1 指針にある通り後の 計算を見越して,ô= としている。 < (1) と同様に,等式の極 限値が2であることは すぐにわかる。 三角不等式。 [1] lim {kf(x)+ x-a [2] limf(x)g(2 xa 定理 合成関数の極 関数f(x), g(x) このとき,合成関委 E-δ論法による証 対応する の値を (1) f(x) g(x) の極限 る。 関数の値 える。 (2) 合成関数 f(a) に近づ 解答 (1) 性質 [2] を任意の limf(x)= x-a 0<\x-a 成り立つ ここで, c0 から limf( x-a 48は1との大きく ない方をとればよい。 更に、指針にある通り、 後の計算を見越して 8=1としている。 0<\x が成 lim x-a

未解決 回答数: 1
化学 大学生・専門学校生・社会人

有機化学についての質問です! 写真の④の問題についての解答を教えてもらいたいです。アに当てはまる化合物は、Dの化合物だと考えています。 よろしくお願いします。

〔IV〕 次の(1)~(3)の間に答えなさい。 解答は所定の解答欄に記入すること。 (1)(ア)sp' 混成軌道(イ) sp2 混成軌道、(ウ) sp 混成軌道および(エ)2p軌道の中から,化合物 A~Fの結合軌道 の形成に使われている軌道を全て選び記号で答えなさい。 H H A -C-H H-CEC-H TOH HOH D C D E F H H A B B E C F (2) 手元に化合物 A~D を順不同で入れた試験管 (ア)~ (エ)がある。 試験管内の化合物を同定する目的で,求核剤 との置換反応を S1 機械で進行する条件と SN2 機構で進行する条件で行い反応速度を比較したところ, それぞれ下記 の結果となった。次の①~④の間に答えなさい。 SN1 機構速い←(ア)(イ)> (ウ)>()→遅い SN2 機構 : 速い←(ア)=(エ)> (ウ)> (イ)遅い。 Me Me-C-Br Me A Me Me-C-Br Me-C-Br HB HC f. HD ① 化合物の求核置換反応が S1 機構で進行するときの反応機構を、中間体の立体化学を明示して示しなさい。 求核 剤の構造は一般式 Nueで表しなさい。 ②化合物Bの求核置換反応が SN2 機構で進行するときの反応機構を、遷移状態の立体化学を明示して示しなさい。 求 核剤の構造は一般式Nueで表しなさい。 ③ 試験管(ア)~(エ)に入っている化合物を反応速度の比較から同定し, 記号で答えなさい。 ④ 試験管(ア)に入っている化合物がSw1 機構でも SN2 機構でも速やかに反応した理由を説明しなさい。SN1 機構の 説明には、共鳴構造式を利用しなさい。 e

回答募集中 回答数: 0