学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1
数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1
情報 大学生・専門学校生・社会人

パソコン得意な方、至急お願い致します。 Q3が分からないです。 I17セルに出席番号が偶数で女子に該当したらそのまま国語の点数を反映するよう入力したつもりなのですが、全て0になってしまいます。とこが間違ってますか? ※画像荒くてすみません

遊ゴシック 11 AA 折り返して全体を表示する 標準 EB [貼り付け] BIU- 2 クリップボード フォント セルを結合して中央揃え 配置 +%⁹ 2 数値 117 A A fx =IF(AND((MOD (ROW(B17),2)=0),E17="女"),$F17,0) B C D F G H 0 1 2 3 10 11 12345678911 12 13 条件付きテーブルとしてセルの 書式設定スタイル 下の表の成績表データから、次の Q1 ~Q3の集計を行い、 結果の数値もしくは結果を計算する数式を G8:G10 に記入せよ。 以下のどちらの方法でもよい。 ・表の1列目より右側を使い、 集計用の列を適宜作った上で、最終的な結果を別途求める ・G8からG10セルにSUMPRODUCT 関数を用いた数式を入力し、元のデータから一気に求める。 Q1:A班 の男子の人数は? Q2: 数学か英語で50点未満の点数を取っている人数は? Q3: 出席番号が偶数の女子の国語の平均点 スタイル B H 挿入 削除 書式 セル WE A 2 並べ フィル J K L M N 出席番号 氏名 班 性別 国語 数学 H 英語 3 H Q3 17 4 海老原梢 C 19 6 宮本 茉莉 A 123 10 高原 C 25 12 笹森 歩美 C 27 14 山崎 凛子 A 29 16 深井 心美 B (31) 18 大井 B 33 20 谷口 絢子 B 35 22 竹本 紗季 B 37 24 長谷川 五月 C 39 26 内田 紗綾子 B 43 30 堀井 美奈 C 女女女女女女女女女女女女 63 48 63 64 18 32 55 38 65 10 64 18 30 0 59 77 40 195 44 27 77 46 35 80 41 51 70 85 17 55 71 62 68 62 26 57 32 61 000000001 44 45

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題が分かりません よろしくお願いいたします🙏

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月◆◇日) も 性別 (男or女) も全く同じである人が少なくとも2人い ある.このことが成立していることを以下に 「鳩の巣原 「理」を適用して説明しています a,b,cに当てはまる正の整数を, dは 「大きい数」 か 「小さい数」 のいずれかの語句を答えよ. 尚, 解答の回 」の入力は不要です。 答には, (配点: 2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われてい て 多くても15, 0000 (十五万) 本らしいです. よっ て考えられる毛髪の本数は0本~15,0000本の全 a 通 りです. 誕生月日については, 閏年の2月29日生まれの方がお られることを考慮すると、 考えられる誕生月日は,全部 でb通りあります. よって、考えられる (毛髪の本数, 誕生月日, 性別) の相異なる組は,全部でc通りになります。これを「鳩 の巣」と考えます。 一方, 「鳩」を日本人と考えると, 日本の人口約1, 2000 0000 (1億2千万) 人と少なく見積もってもこの 数は上で求めた 「鳩の巣」 の個数 cよりはdなので, 「鳩の巣原理」により, 日本人で毛髪の本数も誕生月日 (○○月◇◇日)も性別も全く同じ2人が必ずいることが 解りました。 添付ファイルは ありません

未解決 回答数: 1
数学 大学生・専門学校生・社会人

確率統計の問題です。かなり難問で詳しく解説いただけると幸いです。

問5次のようなパズルのような問題がある. 問題を簡単にするために1年は365日とする (閏年は考えない). ある工場では人の工員を雇うことにする が,このうちの1人でも誕生日の人がいればその日は休みに, 1人も誕生日の人がいなければ働き、その日は 人数と同じn (単位) の利益を得るものとする。このとき,この工場の1年間の利益は働いた日数 xn にな る.例えばたまたま全員が同じ誕生日の場合は働いた日数=364 なので 364n の年間利益を得る. n人の工員をランダムに雇うとき, すなわち人それぞれの工員の誕生日は独立で一様分布に従うときこの年 間利益は確率変数になるが,その期待値を f(n) とする. この f(n) を最大にする n を求めよ. この問題は一見かなり難しいが以下の設問に沿って解答することにより f(n) を最大にする n とその時の f (n) の値を求めよ. (1) n 人の工員を雇うとき,確率変数 S を1人も誕生日の人がいない日数とするとき f(n) を S (やその期待 値, 分散など) を用いて表せ. (2) i=1,2,...,365を日にちを表すパラメータとする. 確率変数 X を次のように定める 1日に1人も誕生日の人がいなかった場合 Xi = 0日の誕生日の人がいた場合 このときP(X = 1) を求めよ. (3) (2) の設定で S を X を用いて表せ.また E[S] を求めよ. (4) 以上を用いて f(n) を具体的に表せ. (5) (4) で求めた f(n) より f(n+1)-f(n) を考えることで f (n) が最大になる n を求め, f(n) の最大値 (の 近似値)を与えよ.

回答募集中 回答数: 0