学年

教科

質問の種類

数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の(1)の回答の意味はわかるのですが、(2)の回答がどうしてそうなるのかが分かりません。 どなたか説明して下さらないでしょうか

231 8 OOOO π p.227 基本事項2 求めよ。 基本事項I) 熱車 計> (0S<T, 0キ π y=mx+n m=tan0 目して、この 2 n x n 40 m 0 のなす鋭角0は, a<Bなら B-a または ァー L図から判断。 元ー(B-a) 4章 x 備 O0 24 で表される。 この問題では, tana, tan 8 の値から具体的な角が得られないので, tan(8-a)の計算に マ8 0200 加 加法定理 を利用する。 角の公式 法 0nied 0nieonie-0200 定 る象限に注 「解 答 2直線の方程式を変形すると 3x+1, ソ=-3/3x+1- cosaであるか 単に2直線のなす角を求める だけであれば,p.227 基本事 項2の公式利用が早い。 y=-3/3x+1\ 1 2 in) 図のように,2直線とx軸の正の向 きとのなす角を,それぞれ α, Bと すると,求める鋭角0は 0=β-e 13 ie 0 傾きが mi, m2の2直線のな す鋭角を0とすると B mi-m2 tan 0= 0 1+m,m2 定 3 0 ソ= -x+1 tan 8=-3/3 で, 2 fies=8 2tan 別解 20) 2直線は垂直でないから tan α= 2 tan β-tanα tan 0 tan 0= tan(B-a)= 1+ tan Atan a e0020 3 -i(13/3) 5 -3/5-)=+(-3,5)-号- 2 の値を /3 3 1+ 2 三 α-B) 2倍角の公 =12 2 (ダール 「もよい。 rtcos 2c ana coa 0<e<号から 0=号 0=2 3 200+ 7 <O<分であるから 2 2 12直線 y=2x-1 とx軸の正の向き 2 とのなす角をαとすると tanα=2 y=D2x /y=2x-1 42直線のなす角は, それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線 y=2x-1を平行 移動した直線 y==2x をも tanα±tan 4 4 tan a土 π 0 4 1千tanatan お 1n(2土 n20co Tπ -1 2土 (複号同順) とにした図をかくと、見通 1千2·1 1 sin しがよくなる。 『あるから,求める直線の傾きは 3sina 3 昼本直線のなす角 直線y=mx+n とx軸の正の向きとのなす角を0とと 直線y=2x-1と角をなすのを求めよ。 2直線V3x-2y+20, 3/3 x+y-1=0 のなす鋭角0を。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャの問題についてです。 3番だけ範囲を求めていないまま解答に答えが書いてありますが、写真のように範囲を定めてはいけないのでしょうか?

/eの式で表される点 P(x, y) は,どのような曲線を描くか。 0 (2), (4)変数x, yの変域 にも注意。●20, -1<sin0<1, -1scos0<1, 2*>0 >媒介変数 t または0を消去して、x, yのみの関係式を導く。 72 曲線の媒介変数表示 例題 131 の のの x=cos0 x=3cos0+2 /r=/+1 ソ=sin°0+1 ソ=4sin0+1 x=2+2 lリ=2-21 p.129 基本事項 2 一般角0で表されたものについては, 三角関数の相互関係 sin'0+cos'0=1 などを利用するとうまくいくことが多い。 **ャ* o 2章 10 から FHIに代入して たソーでt20であるから よって 放物線x=y+1のy20の部分 sin' 0=1-cos?0 から 0s4=xを代入して また,-1Scos 0<1であるから 放物線y=2-x°の -1<x<1の部分 メ=3cos0+2, y=4sin0+1から (1-) t=y° x=y+I y20 1-(2) 20-号 ソ=(1-cos°0) +1=2-cos'0 ソ=2-x? 0=π 0=0 -1SxS1 -1 1 x よって (3) 0を消去しなくても, p.129 基本事項で学んだこ とから結果はわかるが,答 案では0を消去する過程も 述べておく。 COs =2, sin0=ソ-1 3 x-2 COs 0=- フくらないのか) 4 (x-2)(y-1) -=1 sir0+cos'0=1 に代入して 楕円 16 9 x=2+2-* から リ=2-2-から (-Dから xーy=4 た, 2>0, 2>0 から x=22+2+2-2t y=22-2+2-24 (2-)=2- 0nie|2.2-=2"=1 2 より 6Smieュ=0ia 20) A(相加平均)2(相乗平均) COP, 50+7 正の式どうしの和について は,この条件にも注意。 2*+2-22/2'-2t =2 , 2=2-すなわちょ=-tからt=0のとき成り立つ。。 2 よって 双曲線 ギーギー1 =1のx22の部分 4 - 4 血線を描くか。e (6) 類 関西大) 環介変数表示

回答募集中 回答数: 0