学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

マクロ経済学です。(5)からの求め方がわかりません。 教えてください🙇🏻‍♀️🙇🏻‍♀️

問題6(答えだけでなく、計算式も示すこと。) 動学化された総供給曲線、動学化された総需要曲線、インフレ期待形成がそれ Π=5+Y-8 π = π° + Y - YF 動学化された総供給曲線 元 = 5 (Y-Y-1) 動学化された総需要曲線 TCⓇ = πC -1 インフレ期待形成 π:インフレ率 期待インフレ率 (今期においては、 π°= 5 とする。 Y : 完全雇用GDP (ここでは常に Y = 8 とする。) Y, : 1 期前に実現したGDP (今期においては、 Y-1 = 6 とする。) 1 : 1 期前に実現したインフレ率 (1) このようなインフレ期待形成の方法は何期待と呼ばれるか。 (2) 今期の動学化された総供給曲線をグラフ上に表わせ。 (縦軸と横軸の 変数を明示) [アル=ケ-3 カレン5-(4-6) |TV = 11-Y) (3) 上の (2) で使った図の中に、 今期の動学化された総需要曲線をグラ フ上に表わせ。 (縦軸と横軸の変数を明示) (4) 今期の均衡 GDP と均衡インフレ率を求めよ。 (5) 次の期において、 期待インフレ率はいくらになるか。 (6) 次の期において、 動学化された総供給曲線はどのようにシフトする か。 このシフトを図で示せ。 (7) 次の期において、 動学化された総需要曲線はどのようにシフトする か。このシフトを図で示せ。 3) 次の期の均衡 GDPと均衡インフレ率を求めよ。 次の期に経済が完全雇用に達したかどうかを確認せよ。

回答募集中 回答数: 0
歴史 大学生・専門学校生・社会人

こんにちは!大学受験の質問です。 赤本ノートの使い方がいまいち分かりません。世界史の復習の時にどんな風に書いていったら良いか分かりません。一応調べたら出てくるような基本的なやり方は分かります(どんな事を復習すれば良いのかとか)。先人達がやっていたノートの書き方があれば教えて... 続きを読む

(2) 春秋時代の諸侯の有力な家臣は郷大夫と呼ばれた 七雄一戦国時代 五覇春秋時代 戦国時代は氏族制の枠にとらわれない人材登用が行われた、 藩部一清の時代。 (3) 始皇帝は郡県制を敷いて、全国統一支配しようとした。 文字の獄の禁書は清の時代、始皇帝は焚書坑儒 衛満を朝鮮に亡命して朝鮮に衛氏朝鮮を建てた 笹の家臣で戦国時代 始皇帝は、文字、度量衡を全国的に統一した。 徴の反乱は後護の光武帝時代、後漢の馬援によって平安 姉の夫が殺されたことが原因。中国の群県支配に対する反発。 全国統一貨幣の五鉄銭を発行前漢の武帝 始集一半 24 (5) 漢の歴代皇帝は封建制の縮小を図ったため、反発した諸王により呉楚七国の乱が起きた (4) 後漢は黄巾の乱 前漢は赤眉の乱 インド史 (2) 1885年にインド国民会議が開かれると、これを契機として民族運動組織としての 国民会議派が形成されの指導のもと、反民族運動を高揚させていった ティラク」 2117/1 (3) 1905年 イギリスベンガル分割命を出すと反発した国民会議派は、ティラクの指導で カルカータス会を開き、英貨排斥、スワデージ、スフラージ・民族教育の4細飯を採択した イギリスは1906年にイスラーム教徒を支援して全インドームスリム建盟を結成させ、1911年にベンガル分割撤日

回答募集中 回答数: 0