学年

教科

質問の種類

数学 大学生・専門学校生・社会人

公務員試験の、空間把握の問題です。 図のように、三角形AFPの面積を求めるのですが、なぜ最後に面積を求める際に2√2➕6√2をしているのかがわかりません。どなたか教えてください。

年度 2.22 3点を こあり、 正解 5 OF DE 線AFに平行である。 よって、点PからAFと平行な線を引き、 辺CG上に現れる点をQと しては、 切断線は平行となるので、 点Pから面CDHGに引くことのできる切断 (図1)。平行な面に対 (図2)。 さらに、点Qと頂点Fは同一面上の2点となるので、 直線で結ぶと、 切断面AFQPは 線を引く。 同一面上の2点は直線で結べるので、頂点Aと点P、頂点Aと頂点Fを直線で結ぶ 舞台形(図3) となり、この図形の面積を求めればよい。 p.2cmc. [E H 図1 F A E B D R H S 図3 A E P2cm B F D H C 図2 12cm Q G TAC生の正答率 53% P2cmC B F 2 cm Q G 現代文 数的推理 資料解釈 点P及び点Qから辺AFにそれぞれ垂線を引き、その足を点R Sとおく。 CPQは直角二等辺三 角形よりPQ=2√2cmであり、 △AEFも直角二等辺三角形よりAF=6v2cmである。 PQRS, AR= SFより、FS = (6√2-2√2)+2=2√2 [cm] である。 また、 △FGQはGQ=4cm、FG=6cmの直角三角 もより、三平方の定理より、FQ=√6°+4°=2√/13[cm]となる。よって、△FQSに着目すると、三平方の 完理より、QS=√(2√13)-(2√2)=2√/II[cm] となる。 したがって、切断面の面積は、(2√2+6VZ)×2V/II×1/12/=8V/22[cm*] となるので、正解は5である。 何設足す? 空間把握 文芸 257 日本史 世界史

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1