学年

教科

質問の種類

資格 大学生・専門学校生・社会人

この問題の2行目sbというのはなんでしょうか。 文字型sという箱の中にABCDという値が入っていて、 StringBuffer:sb←stringBuffer(s) sbという箱の中をABCDで初期化するという意味かと思ったのですが メンバ変数とかメソッドとかを説明してる枠... 続きを読む

ワグラム中の 問 11 次の記述中の [7] オブジェクト指向 頭の位置は1である。 (4)として Catsb 解説 p. 158 クラス StringBuffer は文字列処理を行うクラスである。 クラス StringBuffer a 図に示す。 に入れる正しい答えを, 解答群の中から選べ。 ここで、文字の先 明を ある。 関数 stringProcessing を stringProcessing ("ABCD") として呼び出すと, 戻り値はで ()tignod 型 説明 メンバ変数 文字列型 格納する文字列。 str 説明 コンストラクタ StringBuffer (文字列型: str) (Linersqlstsb. メソッド 戻り値 引数 strでメンバ変数 str を初期化する。 説明 append(文字列型: str) StringBuffer メンバ変数 str の末尾に引数 str を追加し,イ ンスタンスへの参照を返す。 delete(整数型: start, StringBuffer メンバ変数 str の start 番目からend - 1番 目まで削除し, インスタンスへの参照を返す。 メンバ変数 str を返す。 整数型: end) toString() 文字列型 TIDNA replace (整数型: start, StringBuffer メンバ変数 str の start番目から end 整数型 end, 文字列型: str) lastIndexOf( 整数型 文字列型: str) 目の部分文字列を引数 str に置換し, インス inersqtiqson タンスへの参照を返す。 tibne メンバ変数 str を検索し, 引数 strが最後に出 現する、先頭からの文字位置を返す。見つか らない場合は-1を返す。 図 クラス StringBuffer の説明 ISASE [プログラム] 1: ○整数型: stringProcessing (文字列型:s) 2: StringBuffer: sb ← StringBuffer(s) 3: sb ←sb.append("ABCD").delete(4, 6) 4: sb ← sb.append(sb.delete(2, 3).toString()).replace(3, 4, "D") 5: return sb.lastIndexOf("CD") 第1部 予想 ided ist ge 01508300 金を

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1