学年

教科

質問の種類

工学 大学生・専門学校生・社会人

⑷ばんがわかりません。教えて欲しいです

入り [2. 材料力学〕 1 下図に示すように、1本の敷御製棒材 PRが一端を体にRでピン結合され、 他端をPで 剛体棒 OQにピン結合されている。 OP およびORの長さを1.4mとし、秋鋼製棒材 PR の横断面積をA=1.2cm²とする。また、壁OR(y軸)とOQx軸)とのなす角は90℃とする。 点Qに荷重 W=15kN が作用したとき次の設問 (1)~(4)に答えよ。 R 0 Q e W 3l 2 13 (1) 軟鋼の縦弾性係数Fとして最も近い値を下記の [数値群] から選び、その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数値群] 単位:GPa ① 80 ② 106 ③ 150 ④206 ⑤ 240 (2) 軟鋼製棒材 PRに作用する張力Tを求めるための式で正しいものを下記の 〔数式群] か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 [数式群] ① W 2 W W √3W 3W ② ③ (5) 3 √2 √2 「2 IL AE (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の [数式群] から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 [ 数式群] ◎JMDIA We We 2We 3We ① ② ③ ⑤ 2AE √3AE AE AE √3 We AE -2- 点 Qy軸方向変位y を計算し、 その答に最も近い値を下記の数値群〕 から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 [数値群] 単位:mm ① 3.4 54 ③ 6.5 ④8.3 ⑤ 9.4 3wX A = 2.5mm AE >C0545=1.31mm 3×15000×1,4 1.2×104 × 206GRα 0.656 0.909 -3- ◎JMDIA

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

21番の問題です❕ なぜ表1枚、裏1枚と1個のものでなく分けて考えるのでしょうか、、 全部でx✖️2➕2xとなる意味がわからないです😭 来週試験なのでなるはやでお願いしたいです🙇‍♀️

214 判断推理 解説 表裏とも赤のカードをx枚とすると, 表赤・裏白のカードは2x枚と 表せる。 ここで,表を1枚, 裏を1枚と考えると, 赤のカードは全部でx×2+ 2x = 4x 〔枚〕 ある。 すると、実際の赤のカードの枚数は35+49 = 84 〔枚〕 なので, 4.x = 84 x=21 よって、表裏とも赤のカードは21枚になる。 表・裏白のカードは2×21=42 〔枚〕 なので, 表裏とも白のカードは100-21-4237 〔枚〕 となる。 以上より, 正解は4。 225 解説文字数を見ると、 「桜」は,平仮名では「さくら」の3文字であり, ローマ字では 「SAKURA」 の6文字である。 「富士」は,平仮名では「ふじ」 の2文字であり, ローマ字では 「FUJI」の4文字である。 「梅」は,平仮名で は「うめ」の2文字であり, ローマ字では「UME」 の3文字である。 暗号の数字のかたまりと対比させると,「桜」 が6個, 「富士」 が4個, 「梅」が 3個だから, 数字のかたまり1個はローマ字におけるアルファベット1文字に 対応していると考えられる。 このとき、数字のかたまりの順番とアルファベットの順番が同じであると て対応させてみると, 「SAKURA」 が 「10010-0-1010-10100-10001-0_ 「FUJI」が「101-10100-1001-1000」, 「UME」 が 「10100-1100-100」となり 複数回出てくる 「A」が「0」, 「U」 が 「10100」 に矛盾が生じない。 よー 数字のかたまりの順番とアルファベットの順番は同じであると考

未解決 回答数: 1
数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1