学年

教科

質問の種類

化学 大学生・専門学校生・社会人

全くわかりません 誰か教えてください。

点]課題 3 圧力300kPaの酸素が入っている容積500mLの容器に, 圧力400kPaの窒素250mL を加えたとき,容器内の混合気体の圧力は何kPaになりますか。 ただし, 気体の [B10-02] 温度は変化しないものとします。 (計算式) [10点] 課題 50℃の氷90.0gを100℃の水蒸気にするためには,何kJの熱量を必要としますか。 ただし, 水1gを1℃上昇させるときに必要な熱量は4.18J 水の融解熱は6.0kJ/mol, 気化熱蒸発熱) は40.7kJ/mol, 原子量はH=1.0, O=16.0とします。 (計算式) C 【 有効数字3桁】 (混合気体の圧力は) 450kPa 500kPa 550kPa 600kPa 課題 4 次の濃度に関する問題に答えなさい。 (1) 塩化ナトリウムの20%水溶液をつくるとき 水100gに対して必要な塩化ナトリ ウムは何gですか。 (計算式) x =0.2 100+x 25 100+25-0.2 (必要な熱量は) 204kJ 241kJ 271kJ 300kJ (塩化ナトリウムの質量は) 10g 20g /25g 40g (2) 硫酸の96.0%水溶液のモル濃度は何mol/Lですか。 ただし, 溶液の密度は 1.84g/mLとします。 【有効数字3桁】 (計算式) [20点] 課題 6 次の反応が平衡状態にあるとき, 条件を変えた場合どのように平衡が移動す るでしょうか。 下の問いの空欄に記号 (①~⑤) を記入して答えなさい。 1302 203 - 285kJ ② C (固体) + H2O (気体)=CO+Hz 130kJ ③ N2 +3H2= 2NH3 + 92kJ ④ I2 (気体)+H2 = 2HI + 11kJ ⑤ N2O42NO2-63kJ 硫酸のモル濃度は) 17.6mol/L 18.0mol/L 18.4mol/L 18.8mol/L (1) 温度を高くすると、 平衡が右に移動する反応 ( )( )( (2) 温度を高くすると, 平衡が左に移動する反応 ( (3) 圧力を高くすると, 平衡が右に移動する反応( (4) 圧力を高くすると, 平衡が左に移動する反応 ( (5) 圧力の変化には無関係な反応 )( )( ) ( )

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0