学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の力学の問題について質問です。 過去問を解きたいのですが全く答えが分からないため、解いて頂けないでしょうか?

物理学 ⅡⅠ 期末試験 問題用紙も回収します。 選択式の問題は、正しい選択肢を記号で記すこと。 記述式の 問題は、解答だけではなく、 解答に至る考え方も書くこと。 ベクトルはそれとわかる よう書くこと. ① 質量mの質点の位置ベクトルを、運動方程式を Fとする。 (1) 質点の原点のまわりの回転の運動方程式を導出せよ。 (2) 外力Fが中心力のとき、 角運動量が保存することを示せ。 (3) 質点が (x,y) 平面内を運動する場合、 原点のまわりの角運動量を極座標 (r, Φ) を用いて表せ。 2② 軽い針金でできた一辺lの立方体の枠がある。 1つの頂点に糸をつけ、隣接す 頂点P1, P2, P3 にそれぞれ質量 mi, m2, m3 のおもりをつけて吊り下げたとこ ろ、静止した。 重力加速度ベクトルをg とし、 OP = r. (i=1,2,3) とおく。 7₁ g↓ (1) 系の重心 (質量中心) Gの位置ベクトルrc をri を用いて表せ。 (2) 重力は重心Gに働くとしてよいことを示せ。 (3) 糸の張力の大きさを求めよ。 (4) 重心G と支点は鉛直線上に並ぶことを示せ。 (5) OP が回転軸のときの慣性モーメントI を求めよ。 (6) P1P が回転軸のときの慣性モーメントⅠ'を求め よ。 3 固定軸のまわりで回転する剛体を考える。 剛体の質量をM,重心GとOとの距離をん, 剛体 の軸Oのまわりの慣性モーメントをIとする。 図 のようにx,y,z軸を取り、 剛体の運動を偏角めで 表す。 重力加速度をg とする。 x P3 Ø R 2₂ G Mg P2 P1 (1) 回転の方程式として正しいものを選べ。 do (a) IapzMgh cos o (b) latMghsin o (c) IamMgh cos o (d) apzMgh sino (2) 運動は微小振動であるとする。 周期Tとして正しいものを選べ。 Mgh (a) 2 I I 9 (b) 2 Mgh 2ヶ (c) 21 (d) 2π√√ h 9 (3) 運動は微小振動であるとする。 初期条件として、角度だけ持ち上げて静か に離した。このときの重心の運動として正しいものを選べ。 但し以下では、 は微小振動の角振動数を表す。 (a) r(t) = hoo cos(ft), y(t) = h (c) π(t)=hdo sin (St), y(t)=h (e) x(t)=hdocos (ft), y(t)=hdo sin(St) (b) x(t)=h, y(t)=hdocos (nt) (d) π(t)=h, y(t) hdo sin (St) = (4) 前間の重心運動に対応した回転軸Oに働く抗力 R = Rzex + Ryey として正 しいものを選べ。 (a) R=-Mg, Ry=MhQdocos (t) (b) R=0, Ry=MhΩ2 do sin (nt) (c) R-Mg, Ry=0 (d) R=MhQ2 do cos (St), Ry=MhΩ do sin (Qt) (5) 安定に静止した状態で、 剛体に角速度ω を与えた。 この場合の力学的エネ ルギーEの値として正しいものを選べ。 但し位置エネルギーの基準点は0と する。 (a) E = 0 (b) E=Mgh (c) E-Mgh (d) E ==Iw (e) E ==Iw+Mgh (f)=1/2Iug-Migh (6) 前問の初期条件の下で、 剛体が1回転するために必要な角速度wo の最小値と して正しいものを選べ。 (a) 0 (b) √20 (c) 2Ω (d) 4Ω (7) 回転軸の位置、 すなわちんの値を変化 させたときの慣性モーメントIの変化を 表すグラフとして正しいものを選べ。 -h A" (b) $+) (d) ・h

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてほしいです、、🥲 中等教科教育法数学①です、! 回答の流れも一緒に教えてくださると、本当にすごく助かります、、💦 ②もあげるので、そちらもお時間あれば答えてくださると嬉しいです😖

中等教科教育法数学 ⅡI 第1設題 2 3 14 15 6 18 次の無理数の分母を有理化せよ. 1 (1) (2) 1+√5 +√7 1 2-35 (3) 1 1+√3+2√9 V6v3 + 10 - V6√3-10 の値を簡単にせよ. 次の問いに答えよ. (1) 多項式 + 34 + 53 + 522 +3 + 1 を実数係数の範囲で因数分解せよ. (2) 多項式 100 + 275 + 32:50 + 4225 + 5 を 2² + +1 で割った余りを求めよ. 実数, y, ²x2+12+22=02, (aは正の定数) を満たして変化するとき, 3 + y + 2-3xyzの 値の最大値、最小値をそれぞれ求めよ. 次の漸化式で定まる数列 {an}の一般項を求めよ : an+2=23/an+1 a² Qo=1, a1=2. f(x)=2x3 +32-2 とする. このとき, 次の合成関数の値は, 10 進表記の下で,1000個以上の9を含 むことを示せ: f(f(...ƒ(9))). 10個 △ABC において, AB = 5, BC = 7, CA = 8 とする. 次の問いに答えよ. (1) 角のうち1つであることを示せ . (2) △ABC の各頂点を各辺上にもつ正三角形DEF を考える.但し, 頂点 A, B, C はそれぞれ辺 EF, DF, DE 上にあるとする. このとき, 辺 EF の長さの最大値を求めよ. f(x)=x-10x2+kx とする.但し, k は正の実数とする. (1) 方程式f(z)=0が3つの実数解をもち, それらの解が互いに1以上離れているためのんの条件を 求めよ. (2) (1) の条件を満たすんのうちで, 曲線y=f(x) とz軸とによって囲まれる図形の面積を最小にす るものを求めよ. 19 100円 105円の硬貨合計 4個を用いて B 円払うとする. ある A, B について, 相異なる支払い 方法が2通りあるようなAの最小値を求めよ. |10| 次の問いに答えよ. (1) 1からnまでのn個の自然数のなかから, 相異なる任意の2数をとってつくる, あらゆる積の和 を求めよ. (2) 1からnまでのn個の自然数のなかから, 相異なる任意の3数をとってつくる, あらゆる積の和 が次で与えられることを示せ: 1372(n+1)^(n-1)(n-2).

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1