学年

教科

質問の種類

数学 大学生・専門学校生・社会人

明日までの課題でわからなくて、困ってます😰

問題 以下の問に答えなさい。 問1 以下の方程式について考える。 logy=5+0.2æ logは自然対数を表す。このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、yは | パーセント増加する。 問2 以下の方程式について考える。 y=5+200loge logは自然対数を表す。 このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、yは 問3 以下の方程式について考える。 単位増加する。 logy = 8+2logæ logは自然対数を表す。 このとき、 以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、 yは 問4 以下の方程式について考える。 パーセント増加する。 y = 6+1000logæ logは自然対数を表す。このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、 yは 問5 以下の方程式について考える。 単位増加数。 logy =3+0.05æ logは自然対数を表す。 このとき、 以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、 yは パーセント増加する。 問6 以下の方程式について考える。 logy=5+20loga logは自然対数を表す。 このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、yは パーセント増加する。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

財政学に関する問題です。 国民所得等に関する計算問題なのですが、解答はあるのですが、解説がないためなぜそうなるのか、難しく理解できません💦どなたか教えていただきたいです! ちなみに答えは(1)8 (2)5 (3)6 です!

間3 (5点×3) ある国の国民所得方程式が次のようなものであったとする。 Y = C + c (Y-T) +I+G ただし、 YはGDP、Cは消費のプラスの定数、cは限界消費性向 は税収、Ⅰは民間投資、Gは 政府支出を表し、国際貿易のない閉鎖経済を想定する。 また、c=0.6 であるとする。 この時、以下の (1) (3) 文章中の69 (71 にあてはまる数値をマークして答えなさい。 なお、 計算結果が小数になる場合は、小数第1位を四捨五入して整数で答えなさい。 (1)3兆円の政府支出の増加が行われると(ただし、税収および民間投資は変化せず)、GDPは( 69 兆円増加する。 (2)3兆円の減税が行われると (ただし、 民間投資および政府支出は変化せず)、GDPは (70) 兆 円増加する。 (3) 税収が所得に依存するとして、次のような税関数を想定する。 T = T +tY ただし、Tはプラスの定数、tは税率で、 t=0.2 であるとする。 国民所得方程式のTがこのような税 関数で表される場合に、3兆円の政府支出の増加が行われると(ただし、民間投資は変化せず)、GDP は (71) 兆円増加する。

回答募集中 回答数: 0