学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の(1)の回答の意味はわかるのですが、(2)の回答がどうしてそうなるのかが分かりません。 どなたか説明して下さらないでしょうか

231 8 OOOO π p.227 基本事項2 求めよ。 基本事項I) 熱車 計> (0S<T, 0キ π y=mx+n m=tan0 目して、この 2 n x n 40 m 0 のなす鋭角0は, a<Bなら B-a または ァー L図から判断。 元ー(B-a) 4章 x 備 O0 24 で表される。 この問題では, tana, tan 8 の値から具体的な角が得られないので, tan(8-a)の計算に マ8 0200 加 加法定理 を利用する。 角の公式 法 0nied 0nieonie-0200 定 る象限に注 「解 答 2直線の方程式を変形すると 3x+1, ソ=-3/3x+1- cosaであるか 単に2直線のなす角を求める だけであれば,p.227 基本事 項2の公式利用が早い。 y=-3/3x+1\ 1 2 in) 図のように,2直線とx軸の正の向 きとのなす角を,それぞれ α, Bと すると,求める鋭角0は 0=β-e 13 ie 0 傾きが mi, m2の2直線のな す鋭角を0とすると B mi-m2 tan 0= 0 1+m,m2 定 3 0 ソ= -x+1 tan 8=-3/3 で, 2 fies=8 2tan 別解 20) 2直線は垂直でないから tan α= 2 tan β-tanα tan 0 tan 0= tan(B-a)= 1+ tan Atan a e0020 3 -i(13/3) 5 -3/5-)=+(-3,5)-号- 2 の値を /3 3 1+ 2 三 α-B) 2倍角の公 =12 2 (ダール 「もよい。 rtcos 2c ana coa 0<e<号から 0=号 0=2 3 200+ 7 <O<分であるから 2 2 12直線 y=2x-1 とx軸の正の向き 2 とのなす角をαとすると tanα=2 y=D2x /y=2x-1 42直線のなす角は, それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線 y=2x-1を平行 移動した直線 y==2x をも tanα±tan 4 4 tan a土 π 0 4 1千tanatan お 1n(2土 n20co Tπ -1 2土 (複号同順) とにした図をかくと、見通 1千2·1 1 sin しがよくなる。 『あるから,求める直線の傾きは 3sina 3 昼本直線のなす角 直線y=mx+n とx軸の正の向きとのなす角を0とと 直線y=2x-1と角をなすのを求めよ。 2直線V3x-2y+20, 3/3 x+y-1=0 のなす鋭角0を。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(4)の式と(5)の式の説明を分かりやすく教えて頂けませんか?

第2章 確 家 12 5. 理(3) として採用されている. 以上の定理は確率測度 P が与えられていればどんな型の標本空間にも適 できる。もちろん, これらの定理が使えるためには, 右辺の確率の値がわか。 ていなければならない. 前に指摘したように, 標本空間が有限個の点だけをる むときは,この種の事象の確率の計算はとくに簡単になるので,いま議論をこ のような標本空間に限定することにする。 有限標本空間に対する事象 A の確率を求める際の第一歩は,標本点の各人 に確率を割り当てることである. これらの確率は, 確率の公理のはじめの2つ を満たすように割り当てねばならない。 すなわち,これらの確率はすべて非色 の数で,その和が1となるようなものでなければならない. 確率モデルが予測 に有効であるためには, 特定の標本点に割り当てる確率が,実験を多数回繰り 返したとするときその標本点が得られると期待される回数の割合と一致する上 うなものでなければならない. このような割り当ての可能性はわれわれの経験 や外部の情報,対称性に関する考察, またはこれらを一緒にしたものに基づく であろう.それゆえ,サイコロを転がした経験があってもなくても,図2の標 本空間の各標本点には1/36 の確率を割り当てることが現実的なのである。 標本点の総数を n とし, 各標本点に割り当てた確率を p1, P2, る。各標本点は1つの可能な結果を表わすから, それらは1つの事象である。 この種の事象を単一事象という. これらの事象を e1, @2, *… …, en で表わす. 明 らかにこれらは排反な事象である.さて, いかなる事象 Aも標本点の集合で あるから,Aはそれに対応している単一事象の和である.ゆえに, 公理 (3) に よって次の式が得られる。 2 *……, Pn とす n だすこと P(A} =2 P{e} =M p. と思た k UA ここで和は Aに含まれるすべての標本点についての和である.宝共具(3) 偶然をともなうゲームの多くは, 初期の確率論発展のための原動力であっ た。これらゲームの標本空間は有限個の標本点から成り,すべての標本点には 同じ確率が割り当てられている. これはたとえば,クラップ* とよばれるゲー ム(その標本空間は図2で与えられている)の場合にもいえることである. これ らの標本点の各々には確率1/36 が割り当てられる. n を標本点の総数とし, J(A) を集合 Aの中の標本点の個数とすれば, いまの場合はすべてのi=1, A A 2個のサイコロを用いて行なう 孫の取1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 テータ関数の加法定理の証明がわかりません。 まず、第一段階のh(u)がaにかかわらずh(u+1)=h(u)やh(u+τ)=e^{-2πi(τ+2u)}h(u)を満たすことも何故かわかりません。 1つ1つ噛み砕いて教え... 続きを読む

122 第5章 無限和と無限積 191(u+2)9u-x) めくuty)のu-¥)-9,W+)9(-)91 (v+x)191c-ま) = 0(z-y)0.(2+y)o(u+v)0.(u-v). [証明] 2,9, uを固定し,左辺を f(u) = fi(u)-fa(u). 右辺を g(u) と書n てuの関数とみなそう.両辺が同じ擬周期性と零点を持つことを示し,それ を用いて比F(u)=f(u)/g(u) が定数1に等しいことを導く. まずん(u) =0,(u+a)0,(u-a) はaにかかわらず h(u+1) = h(u), h(u+t) = e-2ri(r+2u)h(u) を満たしている.したがって f(u),9(u) もこれと同じ性質を持つ.よって 比をとれば F(u+1)= F(u+t)=F(u). 次に「F(u) の極を調べよう. g(u) の 零点は(5.26)からu=±u+m+nT (m,neZ)で与えられる.式の形から fi(土v) = f2(土v),したがって f(土v) =D 0がただちにわかるので, u=±vで F(u) は正則である.すると周期性によりu=土u+m+nr でも正則となり, 結局 F(u) は整関数である。ゆえに補題5.23 からF(u) は定数でなければな らない、u=y とおけば f、(y) = g(y), f2(y) = 0 だから F(u)= F(y) =1が成 り立つ。

未解決 回答数: 1