学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

67の答えがCなのですがおかしくないですか?恐らくCEOの事を書いているのだと思いますがCEOと社長presidentは別の役職で同じではないと思ったのですが

65-67 refer to the following conversation. W: Richard, we were deeply impressed with your presentation this morning. You concentrated on the benefits the customers 65. What did the man do this morning? OEIC (A) He had a talk with an executivetsTENING will get from our new products. That was awesome. The sales manager wants you to give a presentation on the same topic to the board of directors next week. (B) He gave a talk. (C) He made a presentation to the board of directors. (D) He put together handouts. 66. What does the woman suggest? I'm glad you liked it. I'l try my best to please the board of directors. Maybe l could use some technology to supplement my presentation. Don't you think using a video allows the audience to understandit (A) Preparing more informative materials (B) Using a video (C) Getting advice from the sales manager (D) Choosing a new topic M: ,Com, /。 better? W: That's a good idea. You should prepare more extensive handouts as well. I will be free this afternoon, so l can help you put them together. M: I'd appreciate it. Let's make it our top priority to ensure that our executives are satisfied. Even the CEO will be there. 67. What does the man say about next week's presentation? (A) It will take place in the afternoon. (B) It will concentrate on the benefits of video presentations. (C) The president will see it. (D) The sales manager will help them prepare for it. 65B 66A 6

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

線で引いてあるところはなぜ、≦n-1ではないのですか?n人いて、n人勝つというのはありえないのでは…?? どなたか教えてください😭

深音 nを2以上の自然数とする。 n人全員が一組となってじゃんけんを1回するとき, 勝った人の数 Berbs m LGANSE actn rchis n 150 )ちょうどk人が勝つ確率 P(X=k) を求めよ。 ただし, kは1以上とする。 をXとする。ただし,あいこのときはX=0 とする。 数学B-46、 (2) Xの期待値を求めよ。 n人の手の出し方は全部で [1] 1<kSn-1のとき 勝つん人の選び方は その各場合について,勝つ人の手の出し方は、 ゲー, チョキ,←負ける人の手の出し方 パーの3通りずつある。 3" 通り 【名古屋大) C 通り 0 4 は自動的に決まる。 P(X=k)= »C&X3_»Ch 37 よって 37-1 [2] k2nのとき (2)Xのとりうる値はX=0, 1, 2, P(X=k)=0 ……, n-1である。 n-1 E(X)= EkP(X=k)= 1 n-1 1 n-1 Ek,C= 37-1R=0 -Ek,C。 37-1=1 k=0 こで 1SkSnのとき n! n! n! k,C&=k そ,C= =n*n-1C&-1 n-1 よって E(X)= ーCh-! 37-1R=1 = ー(カー1Co+n-1C:+……+カー1Cカ-2) 37-1 ここで,二項定理により (1+1)”1ーュー」Co+n-1Ci+ +カー1Cn-2+n-1Cn-1 カー1Co+n-1Ci+ +n-1Cn-2=2"-1_n-1Cカ-1 =2"-1-1 ゆえに n(2"-1-1) E(X)= 37-1 したがって 確率変数Xの期待値,分散,標準偏差を求めよ。 確率変数 11X-2の期待値,分散,標準偏差を求めよ。 【類センター試験」 るる値はX=0 1.2.3.4.5で

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

線で引いてあるところはなぜ、≦n-1ではないのですか?n人いて、n人勝つというのはありえないのでは…?? どなたか教えてください😭

深音 nを2以上の自然数とする。 n人全員が一組となってじゃんけんを1回するとき, 勝った人の数 Berbs m LGANSE actn rchis n 150 )ちょうどk人が勝つ確率 P(X=k) を求めよ。 ただし, kは1以上とする。 をXとする。ただし,あいこのときはX=0 とする。 数学B-46、 (2) Xの期待値を求めよ。 n人の手の出し方は全部で [1] 1<kSn-1のとき 勝つん人の選び方は その各場合について,勝つ人の手の出し方は、 ゲー, チョキ,←負ける人の手の出し方 パーの3通りずつある。 3" 通り 【名古屋大) C 通り 0 4 は自動的に決まる。 P(X=k)= »C&X3_»Ch 37 よって 37-1 [2] k2nのとき (2)Xのとりうる値はX=0, 1, 2, P(X=k)=0 ……, n-1である。 n-1 E(X)= EkP(X=k)= 1 n-1 1 n-1 Ek,C= 37-1R=0 -Ek,C。 37-1=1 k=0 こで 1SkSnのとき n! n! n! k,C&=k そ,C= =n*n-1C&-1 n-1 よって E(X)= ーCh-! 37-1R=1 = ー(カー1Co+n-1C:+……+カー1Cカ-2) 37-1 ここで,二項定理により (1+1)”1ーュー」Co+n-1Ci+ +カー1Cn-2+n-1Cn-1 カー1Co+n-1Ci+ +n-1Cn-2=2"-1_n-1Cカ-1 =2"-1-1 ゆえに n(2"-1-1) E(X)= 37-1 したがって 確率変数Xの期待値,分散,標準偏差を求めよ。 確率変数 11X-2の期待値,分散,標準偏差を求めよ。 【類センター試験」 るる値はX=0 1.2.3.4.5で

回答募集中 回答数: 0