学年

教科

質問の種類

物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全然わからないです…

問2 右図のような2次元平面上で物体が点 A を出発した後、点 B、C の順に移動した。 この時、物体は AB、BC 間をそれぞれ一定の 加度号、妨で移動した。右図の各ます目の間 隔を 1.00 [kmlとして、 以下の問いの答えを解 答用紙に書け。ただし、有効数字は 3 桁とす テ る。単位も必ず書くこと。 (@) 物体が AB 間を移動する間、その速度可は 七=(-2.00.2.50) 【km/h]であった。物体が ~ AB 間を移動するのに要した時間を求めよ。 ⑩) 速さ[世|を[malの単位で与えよ。ただし、Y41 = 6403とする。 (<) 物体が BC 間を移動するのに要した時間は 4.00X10-! 【h]であった。婦を求めよ。 (3) 位置Cから速度(-1.00, -3.00) [km/h]で 3.00 [hl移動したときの物体の位置をD とし、 さらに位置 D から速さ 5.00[km/h]で(⑭ 3)方向に 2.00 [移動したときの物体の位置を E とする。位置D から位置選へのベクトルを図中に示せ。 問3 A、B、Cの位置にそれぞれ-4.0x10*【CI、 2.0x10* [Cl、 -5.0x10? [CIの電荷が分布している 一 とき、C の位置にある電荷に働く力を有効数字2 桁で求め、解答用紙に書け。 単位も必ず書くこと。 ただし、図の1 目門りを1.0 mlとする。また、<ー は90x10? Nm2Czとして計算してよい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全ての問について、解答のプロセスあるいは結果を教えていただきたいです。また、大まかなやり方のみでも大変助かります。 物理が得意で解いてくれるという方、是非ともよろしくお願いいたします!

ト <電上な運動する質点がある、 時刻での加度が(9) = mat (Goo は定誤と表され。 また時誠一 での位置(46) は0であった時誠の関数として位 z() と加聞葉e() を求めなさい 質量mの質点がzy平面上で, 位置= ( 4cowof。 sing ) と家される衝動をしている. こことで4 は長半径と知半径。 は角吉度であり、 それぞれ定数である。 速度 加速度さを求めなさい. また.質 齋にはたらく力を求め、力の方向について説明しなさい. 3. 質点の位置が ー 3 =z⑩ +w(OG 0=0+w(Ox- age と表されるとき, 質点の軌跡は リー 4z2 上 おェ+どである. 初期条件が (z(⑩.⑩) = (0⑩.0: (ez(0),w(0) = Cocosmsnの のこきの係数 4のを求めなさい. また,ッー0 となるァの値と角度6の関数として求めなさい の2の場合考える。() 物体に机の上に四かれ静止。(b) 物体が空気抵抗を受け 上姜休(G78く罰を説明しなさい. また, それぞれのの反作用の力がどのよう の乗に比例した抵抗 (枯作抵抗) 個5る 陳力加送度の大きさを 。。洛 回雪二をとるとき, z 直方向の

回答募集中 回答数: 0