学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1番、3番の前半、4、5が分かりません。 自分で調べながらやっているつもりなのですが、式の関係性などが全然掴めず、解けません。過程と共に教えて欲しいです。

確認問題 #01 ドブロイ波長 1.ド・ブロイ波長は、運動量p=mv の物質が持つ波 (物質波) の波長であり、 入=h/p=h/mv と表される。ここで、 hはプランク定数、mは質量、 v は速度である。従って、運動エネル ギーEの粒子についてのド・ブロイ波長はと表される。 電子について、波長入を À 単位、 運動エネルギーをV単位で表すとき、 [Å] 150.4 == と書けることを示しなさい。 プランク [E[ev] 定数は6.626×10-34 [Js]、 電子の質量は9.109 ×10-31 [kg] 1 [eV] = 1.602 × 10-19 [J]、1[Å] = 1 × 10-10 [m] とする。 2. 運動エネルギーが50eV の電子のド・ブロイ波長を求めなさい。 3. 光の粒子性を表す光量子仮説での式により、光子エネルギーE=hv と光の波長 入の関係式 がE [eV] = 1240/2 [nm] と書けることを示しなさい。 また、波長が400nmの光について 光子エネルギーをV単位で求めなさい。 4. Ni 単結晶表面での最近接原子間距離は 0.249mm である。 電子のエネルギーが100eV の とき、n (回折の次数) がいくつまでの回折スポットが出現するか述べなさい。 また、 それ ぞれの回折角度を求めなさい。 同様に、電子のエネルギーが150eVのとき、 nがいくつま での回折スポットが出現するかと、それぞれの回折角度を求めなさい。 be 101 be 入 02 d d sine₁ =λ d sin0222 5. 運動エネルギーが100eV の電子をある金属の結晶表面に対して垂直に照射したとき、 表 面の法線方向から 25.2° と 58.3° の方向に回折スポットが観測された。 これらが、 1次お よび2次の回折スポットに対応する場合、この金属の原子間距離を A単位で求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全部分かりません!ちんぷんかんぷんです!💦

2/2 物理学入門 演習問題 第6回 1. (a) 減衰振動の運動方程式 d²x dx m +ym dt2 dt -at の解がx(t) = Ae™“ cos (at + 8 ) となるためには、α, y, w。 のどのような関数になら -+kx=0 なければならないか示せ。ただし、ω=√k/m はばねの振動数である。 (b) 初期条件x(0)=x,0(0) = v を満たすような解はどのようになるか示せ。その際は x(t) = Aeat cos (wt+8) = Ae-at (cos wt cosdsin wt sin δ) となることを用いて、 A,8 を消去せよ。 (c) 減衰振動の場合、ばねのエネルギー=mu²+=kx2は「常に」単調減少すること をニュートンの方程式から直接示せ。 2 2. 下図のように2つの粒子が3つのバネにつながっている場合を考える。粒子は1次 元の空間しか動かないものとし、それぞれの粒子の平衡位置 (自然長)からのずれを X1X2 とすると、全体のバネの位置エネルギーは V(x1,x2)===kx²+/=/k'(x_-x2)+=kx2 2 と書ける。ここでk, k'はバネ係数である。 粒子 1,2の質量は等しくmとする。 (b) 重心座標xG (a) 粒子 1,2 それぞれの運動方程式を書き下せ。 x₁ + x₂ 2 (c) 重心座標と相対座標に関する運動の、それぞれの周期を求めよ。 = -と相対座標x=x-x2 に対する運動方程式を書き下せ。 Free free 00000 X2 elllllllll X1 IC

未解決 回答数: 0
物理 大学生・専門学校生・社会人

ここの大門2、3が全く手がつきません。 解説お願いします。

速度に比例する摩擦が働く放物運動を取り上げよう。 始めの位置を原点にとって、上向き正のxy座標で考えて 以外に速度ベクトルv= 0 みる。 この場合、 物体には重力ベクトル mg= (_゜ に比例する抵抗力ベク -mg Vy -kvz トルf=-kv= が働く。物体に働く力の合力ベクトルはmg+f=mg-kv= とな -kvI -kvy -mg - kvy る。よって、運動方程式のベクトル式、 F = ma、 の F に mg + f をいれて成分ごとに微分方程式を解けばよい。 問題 2. 以下の問いに答えよ。 (30) (a) この運動について、方向と方向の運動方程式を書け。 (b) 初期条件として、 水平線から角度0の方向に速度ベクトルの大きさで。 で物体を発射したとする。 各運 動方程式を解いて、 速度ベクトルを時間の関数として求めよ。 y 座標は∞までいけるとして、t→∞ での速度ベクトルを求めよ。 (c) 位置ベクトルを時間の関数として求めよ。 そして t∞で到達できるx座標の最大値を求めよ。 (d) t〜0近傍の Cr, y, T,yの近似式を指数関数のTaylor 展開を用いて求めよ。 このとき、速度に関して はtの1次、座標については2次までとること。 3. 速度に比例する摩擦 (係数k) が働く時に、 真下に初速 vo で投げ下ろす場合の速度を時間の関数として求め よ。 但し、座標は下向きを正としt=0でx=0 とする。(20)

回答募集中 回答数: 0
1/5