学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物体の落下と粘性抵抗力に関する問題です。最初の図を書く問題からわかりません。わかる方いらっしゃいますか?よろしくお願いします。

問題2 質量の質点の空気中における落下を考える. 質点には重力, および空気による粘性抵抗力 がはたらいている. 粘性抵抗力の大きさは質点の速度に比例し、その比例係数をん > 0 とする. 重力加速度をg とする. 鉛直下向きをy軸とする. 以下の問いに答えよ. 1. 質点とy軸を描き, 質点にはたらく重力と粘性抵抗力を矢印として図に描き入れよ. ま た、それぞれの大きさを図に書き入れよ(「大きさ」 が負の値にならないように注意!). 2. 質点の運動を記述する運動方程式を書け. 3. 時間の経過とともに質点は重力の影響で加速し, それに伴い粘性抵抗力が増大する. 十分 に時間が経つと質点にはたらく重力と粘性抵抗力がつり合い, 質点の速度は一定値に 達する (終速度という). 質点が終速度に達したとき加速度が0であることを踏まえて 運動方程式を解くことなくf を求めよ. 4. 運動方程式を解け. また, 運動方程式の解y(t) を時間微分し, t→∞の極限をとること で終速度 limt→ ý (t) を求め, 前問で導いた答えと一致することを確認せよ.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この物理の問題を教えてください

問題3 (光の干渉) T 図2のように、 絶対屈折率がn=1の2枚の平面ガラス (媒質1) の間に厚さdの薄い板を挟み、 その間にできるくさび形の層に絶対屈折率n2=1の媒質2を入れる。このとき図の点Oから距離 だけ離れた点Dの上方にある点Aから光 (単色光) を当てて上から覗き見ると、 図のOQ 間に 「光 が強め合った明線」 と 「光が弱めあった暗線」 の縞模様が現れる。 以下では簡単のために点Aから 出る光は直進するものとし、A→C→Aという経路の反射光1とA→D→Aという経路の反射光2に よる干渉だけを考える。 図のQの長さをL=100dとし、 真空中の光の波長を入 として、以下の 空欄を埋めよ。 また選択肢がある場合には選択肢の番号を書け。 (i) 媒質1における光の波長は、媒質2における光の波長の (13)倍である。 (ii) 反射光1と反射光2の光学距離の差 (14) 倍であり、 また点Aから入射した光が反射 の するときに位相がずれるのは {(15) 1.点C, 2.点D} である。 (iii) 図のOQ間に見える隣り合う明線の間隔は入。 の (16) 倍である。また=375入) の位置に できるのは {(17) 1. 明線 2. 暗線, 3. 明線でも暗線でもない線} である。 A 媒質1 X 媒質2 L Bi 光 D P 媒質 1 Figure 2: くさび形の層による光の干渉。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(4.39)の計算が下の説明を読んでもわかりません どなたか教えてください

参照)は, っれるテク 4.3 LSZ 簡約公式 77 .8 do A(p)) = Jd°p]2 -2元6(p -Vp°+ m° 0)(2元)°8°(p- p) 順序とし Z 7(2x)2E。 を得る。ここで,p° = \p° + m' = Ep, <0|¢(0) |p; m°> = \Z/(2x)°2E, ieiw max(z.…, z) 点グリー くp;m°| 0+ ie ((3.29)参照)を用いた。 ここまで来れば,pおよび ω積分は(デルタ関数があるので)簡単に実行でき エn)]|0> る。積分を実行した後に,pf に関して質量殻上の極限(→m? すなわち →、pf + m°)を取ると, A(pi)に pf-m° の極が現れる。すなわち, 4.37) (2元)/Z eip-/+ m)max (x). ….) A(p)T(2x)2E, -/pi+m? + ie (エn)] = くp;m'| 完全系 パ→、所+ m? i/Z R- m' + ie 『pi 責の中で V(2x)°2E»× くp;m°| P1 皆段関数 (4.39) の寄与 以外の つも行 m?> = である。最後の行では, 分母分子に pf+\pf+ m? を掛けて変形した。ここで 興味があるのは質量殻上(pR= m?, pf > 0) での極なので, 最後の行では, f = m° の極以外の飛は Ep, =Vpi + m? におきかえた.また,分母の 2/p + m?e を改めてeとおきなおした.これは, sが正の微小量であればよ いので,正当化される。 上の結果から,次の2つの重要な帰結を得る。1つ目は期待されたように,質 ら次の因 量殻上では,運動量空間でのグリーン関数から自由粒子のファインマン伝播関数 として pf= m° の極 (p-m'+ie) !が現れることである。2つ目は, 質量殻 上では波動関数のくりこみ定数、Z が現れ,それは散乱行列(4.33) での1//Z と相殺するという事実である. これは,波動関数のくりこみ定数Zが物理的な量 ではなく,観測量からは消え去るべき量であることを示唆する。(この点に関す る詳しい議論は,17.3.3項を参照,) 4.38) 4.3.6 LSZ簡約公式に対するコメント 首を終える前に, LSZ 簡約公式についてコメントをいくつかしておこう. まず, LSZ 簡約公式を導出する際に, 場φ(z)の相互作用に関する情報は必要 なかったことに注意しておく. つまり,相互作用の情報は, T積のグリーン関数 G(m+n) てる1粒 Um, I1, …, In)の中に含まれている.また, LSZ簡約公式は本 p).1 を 質的にグリーン関数のみで書かれているので, 散乱に関する情報はすべてグリー

解決済み 回答数: 1
1/4