学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

至急!!わからないので教えていただきたいです!

平面から30°傾いた斜面X と, 45°傾いた斜面 Y が水平面の両側になめらかにつな がっている。水平面上のBC間には摩擦があるが, それ以外の水平面および斜面 X,Y は なめらかである。 BC間の距離は2hで, 小物体とBC間の水平面との間の動摩擦係数は 4 である。また、小物体の運動は同一鉛直面内で行われるものとし、 重力加速度の大き さをgとする。 下図のように、斜面X 上で水平面からの高さがんの点Aに質量mの小物体を置き, 静 かにはなしたところ, 小物体は斜面上をすべり下りて、 水平面上を点Bへ向かった。 斜面 X 斜面 Y A m h 小物体 1 2 - mg 2 30℃ 1ERSON √3 2 2h (1) 次の文章中の空欄 ア エに入れる式として最も適当なものを,下の①~⑨の うちからそれぞれ一つずつ選び, 番号で答えなさい。 但し, 同じ番号をくり返し選んで もよい。 小物体が斜面上をすべり下りているとき, 小物体にはたらく重力の斜面に沿った方 向の分力の大きさはア垂直抗力の大きさはイである。 このとき, 小物体が斜 面上を点Aから最下点まで移動する間に重力が小物体にする仕事はウ 垂直抗力 が小物体にする仕事はエである。 mgh √√3 2 B 水平面 mg mgh mg C ⑧ mgh 50 (3) 28.3 ④2mg ⑨2mgh 245゜ 8110 (2)点 B に達する直前の小物体の速さはいくらか。 最も適当なものを、次の①~④のうち から一つ選び、番号で答えなさい。 high ②√gh igh 0 4√2gh

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理の力学の問題です。2番から何度やっても答えが合いません。解説お願いします。

ry平面上を運動する物体 A がある。この物体の時刻における位置ベクトルa(t) がa(t)= P+2 と表されている。 ここに、ベクトルとは一定のベクトルであり、その成分表示はp=(2,2), d = (4,8) であった。 また、時刻 t = 0 において物体 A と同じ位置を同じ速度で出発した物体Bが、物体Aと同じ直線 上を、速度に比例した加速度を受けながら運動している。 物体Bの時刻t における位置ベクトルを 〒B(t), 速度ベクトルを TB(t) とする。時刻もにおける物体B の加速度は、定数kを用いて -köB(t) と表されていた。 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 数値は全て SI単位系を用いて書 かれている。 分数を答える場合は既約分数で答えること。 12 13 14 15 1. ベクトルアの持つ単位は[m であり、ベクトル」の持つ単位 mu である。 選択肢 ① -3 ② -2③-1 0 1 (6) 2 ⑦ 3⑧ 該当なし 17 x軸上 2. 物体A のry平面上の運動の軌跡は傾き 16 の直線であり、物体は時刻t= 18 の位置 x= 19 を速度 20 21 で通過する。 22 123 である。 3.定数kの持つ単位は[ml 選択肢 ①-3② -2 -1 ④0 ⑤1 ⑦ 3⑧ 該当なし 4. 物体Bの運動を考える。 JB(t) について成立する方程式として適切なものを以下の選択肢より 全て選ぶと 24 である。 dUB JB(t) = (4,8) @ UB(t) = -k(4,8) 3 = -k(4,8) dt 選択肢 d²UB dvB dt = -küB (t) 5 d²UB dt2 = -k(4,8) Ⓡ dt2 5. k = 4 とする。 じゅうぶんに時間が経ったとき、物体B の速度は 25 26 き位置は 27 28 に近づいていく。 -kuB(t) に近づいてい

回答募集中 回答数: 0
1/5