学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーのn²-1はどのようにわかりますか?

とと,エルミート性のかわりに, 対称性 (A, B)p = (B, A)F が成り立つことです。 実ベクトル空間の内積が複素ベクトル空間の内積と違う点は,実数値をとるこ が直接わかるわけではありません. ここでは量子トモグラフィー, つまり量子状 そのためには, いくつかの種類の測定をしなければなりません. どのような測 多数回測定によってわかるのは, あるオブザーパブルの平均値だけなので, 状態 状 態を決定することを考えます。 定を行えば量子状態を決定できるでしょうか。 ■ 4.1 密度作用素の空間 n次元複素ユークリッド·ベクトル空間H上の密度作用素全体のなす集合Dens の構造をもう少し考えてみます. 密度作用素はエルミート作用素なので, エルミー ト作用素全体のなす集合 Herm に目を向けてみましょう. Herm は実ベクトル空間です. 次元はn次のエルミート行列のパラメータの数を 数えればよくて,対角線にn個の実パラメータ,それ以外のところにn(n-1)/2個 の複素パラメータがあるので, n° 次元になります.さらに、実ベクトル空間 Herm に内積を定義しておきます。 (定義)エルミート作用素の内積 A, B をエルミート作用素とするとき, 内積( , )= : Herm × Herm → Kで (A, B)F = Tr(AB) と定義する。 また,第1スロット, 第2スロットの両方に関して実線形です。 ミ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理 微分方程式に関する問題です 各問について解答に間違いがないか、又、解答の一部分からないところについてお伺いしたいです (1)解答におかしなところはないか ⑵解答におかしなところはないか/下線を引いた運動方程式の解法について ⑶解答におかしなところはないか/aと中央のた... 続きを読む

【問題1】 野球ボールの運動 野球においてホームランのボールの軌跡を考える。野球ボールの質量をm, ボールをバッ トでコンタクトした瞬間の地面からの高さ, 初速度,地面に対する角度をん,, %, 6,とす る。バッターボックスからフェンスまでの距離L, フェンスの高さをHとしたときに, ホー ムランとなるために初期条件が満たすべき条件を0,-v平面上に示せ。 ヒント:ボールの軌跡を表す微分方程式を求め,6,を与えた時にホームランとな るために必要な。を求める。6,をいくつか変えて, %-G,平面上に図示する。んに よって異なる様子も検討してみるとよい。LやHは具体的な数値を入れてもよい。 【問題2】 ロケットの運動 無重力空間をまっすぐに飛ぶロケットを考える。このロケットの燃料を除く質量はM, 燃料の質量はm(t) とする。このロケットは燃料を単位時間あたり同じ質量だけ使用するも のとし,1=0での燃料の質量をm,,燃料の消費率をμ [kg/s]とする(いずれも時刻さには 無関係な正の定数)。このロケットに搭載されているエンジンは, 燃料の消費により推進力 Fを得ることができる。μが定数であるため, Fも時刻には無関係な正の定数となる。出 発点を基準にしたロケットの位置をx(t) で表す。このロケットが, 時刻t%3D0から燃料を使 用して無重力空間を飛ぶとき,x(t) の微分方程式を誘導せよ。 【問題3】 懸垂線(カテナリー) 距離aだけ離れた 2 つの支点によって支持された長さ距離Lのケーブルの懸垂線につい て考える。ケーブルの断面積をA, 密度をp, 張力をT(x), たわみをy(x) とし, たわみ角を 0(x) とする。このとき, y(x)を求めるための微分方程式を誘導せよ。 また, aと中央の最大 たわみの関係について考察せよ。

解決済み 回答数: 1