学年

教科

質問の種類

物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学 問題3.1と3.2わかりません。解説お願いします🙇‍♀️

長い R 1.3 ガウスの法則 例題 3 ・一様に帯電した平面とガウスの法則 面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め よ。 となる。よって 6 20 E=- E0 E 000 図1.10 ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。 【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい 距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大 きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を S とすると, ガウスの法則は fe·ds=2E.S=OS - E to 6 13 080000 問題∞∞ fs of foo sofs of 3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から 距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離 が20以内にある電荷によるものであることを示せ . 3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電 している。 平面によって分けられた各領域での電界を求めよ. I II III 0 3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5× 10 N/C であった。 電荷の面密度はいくらか. 31

回答募集中 回答数: 0
1/4