学年

教科

質問の種類

物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

ぜーんぶ分かりません 解説付きでお願いします

【圧力,血圧,仕事とエネルギー, 温度と熱】 問① 右の図において, ポンプからの圧力 P1 を次の(A)~(C)にしたがって表せ。 ただし、水の密度は1g/cm² とする. (A) 単位を mmH2Oとして表せ. (B) 単位を mmHgとして表せ. (C) 単位を Paとして表せ (水の密度を単位変換してから計算すると良い) . 問② 平均血圧 110mmHgの人が、仰向けで寝ている時は、 心臓部、頭、足の動脈の血圧は110mmHgで同じだった。 右図のように起立した直後、 心臓部の血圧が110mmHg であったとき、頭部と足部の動脈の血圧をそれぞれ計算 して、 血圧値を右図の( )内に記入せよ。 (ただし、血液の密度は水と同じとみなし、 水銀の密度は血液や水 の密度の 13.6倍とする。 血管の摩擦や血液の粘性は無視する。) ( ) mmHg -163.2 cm ポンプからの圧力 110 mmHg -122.4 cm ) mmHg 0cm 問④ (A) おむすび1つの熱量が 180kcal であるとき, これは何kJになるか? 大気圧 Po 問③(A)質量 500gのボールが高さ30mのところにあるとき,何Jの位置エネルギーを持っているか? (B) 15℃のエタノール 100g と 60℃の水 500gを混ぜて600gのアルコール溶液を作った. この溶液の温度は何℃になるか? ただし、簡単にするため、エタノールの比熱は 2.09J/g℃として計算せよ. ・頭部 (B) (A) の状態からボールを落下させたとき, 高さ0mに到達したときのボールの速度は何m/sか? (ただし、空気抵抗やボールの回転は無視する) 水 ・足部 30cm ・心臓部

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理基礎の運動エネルギーなどの範囲です。 高校で物理を履修しておらず、何が何か全然わかりません。どなたか教えていただきたいです。

2. 重力下(重力加速度をg とする)で、質量mの物体を地面から高さんの場所から静 かに落とした、この時、地面から高さ1(0≤l≤ん) の時の物体の速度を、以下 のように考えて求めた。 空欄に当てはまるものを答えなさい (10点) (選択肢から選 (必要に応じて、自分で問題のイメージ図を書いてみることをおすすめ) (a)鉛直下向きを正とする。 今、物体には保存力である重力しか働いていないため、 力学的エネルギー保存則が成り立つ。つまり、地面から高さがx (0≤x≤h) であ ● 運動エネノ ダーを K (z)、ポテンシャルエネルギーをU (2) とす ると、以下の式が成り立つ。 K(x)+U(z)=(一定) (1) 今、地面から高さの時の速度をv(z)とする。 ポテンシャルエネルギーの基 準を地面とすると、上の式は K(x) + U(x)= = と求まる。 1 5m イ+mg ウ=(一定) ア と書ける。 (b) 今、高さと、その地点での速度v(x) が判明している地点は、高さんの点で ある。初期条件より、この点ではv(h)=アである。これを式 (2) に代入す ることにより、式中の(一定) の値、 つまり物体の持つ力学的エネルギーは以 下のように K(x) + U(x) = K (h) + U(h) = 1 と求まる。 (c) (2) および (3) を合わせることにより、高さでの速度v(x) が v(x) = 7 (2) 2 (3) (4)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

本日、学校の物理の授業にて、この問題が出されました。少しでも助かるので、教えて頂きたいです。物理が苦手科目の為、何から時進めていけばいいのか分かりません。

問題 I-1 火星から見た地球運動について考える。簡単のため、太陽、地球、火星の大きさや自転は 無視できるものとする。また、太陽を原点として xyz 座標をとり、太陽、地球、火星は1つ の平面(xy 平面)内にあるとする。地球と火星は太陽のまわりをそれぞれ速さ v。と Um で 等速円運動をしているとし、図のように時 刻=0 で地球は位置ベクトル re(Re, 0, 0)の 位置に、また火星は位置ベクトル Pm (Rm, 0, 0)の位置にあったとする。火星を原点とす る地球の位置べベクトルと速度ベクトルが 平行になったとき、火星から見た地球は見 かけ上止まっているように見えると考え られる。Rm /Re=1.524、vJvm=1.237 とした とき、火星から見た地球がこのように止ま って見える最初の時刻(およそ何日後か) を求めよ。ただし、地球の公転周期を365 日として計算せよ。 y4 U。 Um 太陽 地球 0 JR。 Rm 問題1-2 図のように,質量 m の物体が半径aの半円弧に沿って一定 の速さひで運動したとする.この運動の間に物体にはたらいた 平均の力(ベクトル量)を平均の定義にしたがって求めよ.求 めた平均の力にかかった時間をかけて求めたカ積が、運動量の 変化(ベクトル量)に等しいことを示せ。 a 問題I-3 図のように滑らかな滑車を介して2つの質量 mの物体と1つの質量 m2 の物体が吊り下 げられて釣り合っている。このとき斜めの糸と鉛直との間の 角度は0であったとして、以下の間に答えよ。 (1)質量 m2の物体の位置をxだけ下向きにずらしたとき、 3つの物体の位置エネルギーはどれだけ変化するか。た だし、滑車の大きさや糸の質量は無視できるとし、滑車 間の距離を 2a とする。 m」 m」 (2) Ar がaに対して非常に小さいとき、上で求めた位置エ ネルギーの変化量を、テイラー展開を使って近似する と、xの1次の項の係数はゼロになることを示せ。 (注意)Ax を変数としてテイラー展開するのではなく、Axla のような1より小さくなる 形に整理して、この1より小さい項全体を1つの変数と見なしてテイラー展開する。 m2

回答募集中 回答数: 0
1/5