学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解き方と答えがわからないので教えてほしいです。お願いします。

力のモーメント:腕に垂直な力の成分×腕の長さ INJ に! 125m [7] タイヤのナットを長さ25cmのレンチを使って回そうとしている。 200Nの力を30°の角度で加える ときの力のモーメントを求めなさい。 200N Fr=200N =200N -25cm- 200N Fr J =100√3N M=1000f3N×0.25m 25 √3 N.m [8] 水平な床の上に荷物が置かれている。 (1)~(3) の力がした仕事をJ単位で求めなさい。 (1) 鉛直上向きに 10Nの力で 1m 持ち上げたとき、この力がした仕事 (2) 右向きに 10N の力で 3m移動させたとき、この力がした仕事 (3) 荷物が右向きに1m移動して静止した。 このとき摩擦力 2Nがした仕事 1 x 57 c 0-7 cos 300 $ 2 [9] 質量 80kg のバーベルを 0.7秒で 50cm 持ち上げたとき、発揮したパワー (仕事率)をW単位で求め なさい。 0.7 ION X 1 = 10 J 10N×3m=右向きに3丁 -2NX1m=2丁 (左向きに2J) [10] 運動エネルギーの変化量を求めなさい。 (1)質量 1.0kgの物体が速度 1.0m/s から速度 4.0m/s になったとき k=1/12x1kg (2) 質量 3.0kgの物体が速度 4.0m/sから速度 1.0m/sになったとき 2560W [11] [ ]内の位置を基準にしたときの、重力による位置エネルギーをJ単位で求めなさい。 (1) 床から1.0mの高さにある質量 3.0kgの物体の位置エネルギー 〔床を基準〕 (2) 床から1.0mの高さ、 天井から0.5m下にある質量 2.0kgの物体の位置エネルギー [天井を基準〕

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学の問題です。回答だけでもいいので教えていただきたいです!!

質量mの物体を水平面と0 (ただし, 0 0 < ™/2) の角をなす方向 に速さで投げ上げた. この物体の運動を調べるために, 水平方向で 物体が進む向きを を設定する. このとき, 時刻における物体の位置と速度をそれぞれ ((ty(t)), (x(t), ey(t)) で表すことにして, 時刻t=0における物体の位 置は (x(0),g(0)) = (0, 0) であるとする. また, 空気抵抗は無視できてこ の物体に働く力は重力 mg =-mge のみであるとして, 以下の問いに答 えよ. (1) 運動の様子を図示せよ. 物体に働く力も記入すること. (2) 方向と方向それぞれの運動方程式を立てよ. (3) 速度の成分v(t) とy成分y(t) を求めよ. (4) 位置の成分ェ(t) とり成分y(t) を求めよ. (5) この物体が最高点に到達したときの水平面からの高さを求めよ. 解答群 (1) (a) (c) (b) 0, mg (2) (a) mgsin0, mg cos0 鉛直上向きを+y方向とする座標系 方向とし, dvx dt mg cose mg sin 0 dvy (c)m =mgsino, m=mg cos0 dt (5) (a) (b) .mg (c) (d) X =-mg (b) dvr dvy (d) m- = 0, m- dt dt (3) (a) vェ(t) = vosin0, vy(t)=-gt + vo cos 0 (b) x(t) = vot cos0, y(t)= vm sin (20) g sin A cost 2g sin20 2g vcos²0 2g (d) (b) ux(t) = up cos0, vy(t)=-gt+vo sin 0 0 (c) ux(t) = gtsin0, vy(t) = - gt cos0 + vp sin 0 (d) ux(t) = gt cos0, vy(t) =-gtsin0 + vp cost y (4) (a) x(t) = vot sin0, y(t) = -12gf2 + vot cost y(t) == /2gt² + 0 (c) x(t)=1/2gt-sino, y(t) = -12gt-cos0 + vot sin0 1 (d) x(t) = ½gt² cos0, y(t) = −gt² sin + vot cos + vot sin 0 img sino mg mg cos e x x

回答募集中 回答数: 0