学年

教科

質問の種類

物理 大学生・専門学校生・社会人

距離1mの2点では2π/λの位相差! ってところがわかりません... 教えていただきたいです!

ーx[rad]の位相差があるということ! だから, 図の式は も,t=T\s]での位相が2元に対応しているからなんですね。本全 写真y=y(x)から動く波を出すそ~! 実は“一点集中"の単振動の式もy=Asintでなくy=Asinotとしたの ここではもう1つのグラフ, "写真”y=y(x)からy(x, t)を導いておきま 先では一点注目(ギャル)の単振動y=y(t)から波の式を出しましたが、 @IMAGE おでな y A1 しょう。 まずt=0の波形を図のようにします。 先に一点集中から導いたのと同じ波形で A →X -A す。…つまり, 結果も同じになるはずです よ。 2元 これはy=y(x)の形です。 詳しく書くとy=ーAsinーxです。 え!? y=-Asinx じゃないかって~!?? 数学では横軸がx[rad]だったので sinx でOKなのですが, 今やっているのはyーxグラフ!…横軸は位直 x[m」です。図を見ると横軸方向の位置x=1 (波長)の場所は数字Cは 2元でしたね(この sin の中のを位相といいます)。つまりx=0, Aのと では2元の位相差がある!距離1[m] の2点では 2元 の位相差! 原点と 位置xの点では2元 -x [rad] の位相差があるということ! だから, 図の 2元 y=-Asinxとなるんです。 入 も, t=T\s]での位相が2元に対応しているからなんですね。 さあ,次はt秒後の波です。 y=y(x, t) を求めるのがターゲットですよ。 速さぃの 波はt秒後にvtだけ右に動いているハズで y す。 これ布

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えてほしいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えて欲しいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学・スピンハミルトニアンの時間発展について質問です。(1)〜(3)までは画像2枚目のように解いたのですが、(4)(5)の計算がとても煩雑になってしまいました。この方針で大丈夫なのでしょうか?また、(6)が分かりません。どのように考えればよいのでしょうか?

II. 図3のように番号;= 1,2,3で区別される3つのスピンがあり、それぞれ2軸方向に上向 きと下向きの2つの状態 |0);, [1}; をとることができる。2種類の相互作用 角,。を選択的に 切り替え、1番目と2番目のスピンの状態を3番目のスピンによって制御する。簡単のためプ ランク定数を2で割った定数んを1とし、相互作用白,白および時間tを無次元量として取 り扱う。 自。 ○ン 0 9 三 図3 ここで、1は恒等演算子、9, o9は番目のスピンの演算子,の行列表現である。各演 算子は10); = |0):, of° |1}; = -|1); を満たす。また、3つのスピンからなる状態を|1,0)|0}= |1);|0)2|0)s などと記すことにする。 (1) (),(o)°, of o) + ooを計算せよ。 (2) 9 を 10);, |1);に作用させた結果をそれぞれ示せ。 C○ (3) 白のもとでの時間発展演算子む(t) = exp(-8白t) = とーを白t)”が n! n=0 0(t) = cos° (t)i - sin° (t)a{)a£) + icos (t) sin (t)(o{) + )) を満たすことを示せ。ただし、一般に可換な演算子A, Bについて、e(4+B) - eáeb が成り 立つことに留意せよ。 (4) 白のもとで時間む、続いてのもとで時間tzだけ相互作用したときの時間発展は ()()= exp(-iHnt) exp(-iAt)と記述される。10,0)|0), I0,1)|0), |1,0) |0), |1, 1)|10) の4つの状態がひっ(n/4)0,(m/4) の時間発展をしたあとの状態をそれぞれ書き下せ。 次に、ある状態() = a|0,0) |0) + |1,1}10} (a, 8 は定数)を用意したところ、予期せぬ相互作 用により、1番目のスピンが微小回転してしまい、状態|)= VI-) + €)に変化し た。eの具体的な大きさは分からないが、状態|)をもとの状態」)に戻したい。 (5) 状態」)を問(4) のD2(T/4)ü,(T/4) によって時間発展させると、 Us(r/4)(r/4)) = \)) + i¢)10) という状態に変化した。1番目と2番目のスピンからなる状態|), o)をそれぞれ具体 的に書き下せ。 (6) 問(5) の状態に対し、3番目のスピンの測定をおこなうと、状態|)|1) と状態|o)|0)の いずれかが得られる。それぞれの状態に対してさらに個別にある演算子を作用させると、 微小回転量eの情報なしに状態 |) に戻せる。各状態について必要な演算子を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・剛体の問題です。 (1),(2)は恐らくこれかな?という解を求めましたが、(3)以降が分かりません。

以下の問1, II に答えよ。 zA I. 質量m、半径r、厚さ、高さんの密度が一様な剛体とみなせる円 筒(図1)が、水平な床の上を初速度の大きさ 、初角速度の大きさ woで投げ出され、倒れずに滑っていく運動を考える。円筒底面の中 心を原点とし、円筒とともに移動する座標系のz, y, z 軸および偏角 9を図1のように定義する。y軸の正の向きは常に円筒の進行方向と する。偏角0の位置にある円筒底面が床から受ける単位面積あたり の垂直抗力の大きさ N(0) と動摩擦力の大きさ F(6) の間には、μを 動摩擦係数として比例関係 F(6) = μN(0) があるとする。 b 図1 重力加速度の大きさをgとし、重力はz軸の負の向きに働く。また,円筒の厚さ6は半径rよ り十分小さいとする。空気抵抗の影響は無視して、投げ出された円筒の運動に関する以下の問 いに答えよ。 まず、回転させないで円筒を投げ出す場合 (wo = 0) を考える。 (1) 投げ出した円筒の底面全体が受ける垂直抗力および動摩擦力の大きさを求めよ。 (2) 投げ出した円筒が動摩擦力を受けて静止するまでの距離を求めよ。 (3) 円筒に働く慣性力による原点まわりのトルクの大きさを求めよ。 (4) 投げ出した円筒が床の上を滑っているとき、円筒底面に働く垂直抗力は一様ではない。円 筒の前方(0 =T/2付近)と後方 (0 = ーT/2付近)のどちらの垂直抗力が大きいか、理由と ともに答えよ。 以下では、円筒底面に働く単位面積あたりの垂直抗力の大きさが N(0) = a+ Bsin0 と表せる と仮定する。ここでa,Bは定数とする。 (5) 垂直抗力による原点まわりのトルクの大きさをa, 8, r, bのうち必要なものを用いて表せ。 (6) 円筒が倒れずに滑っていくための条件をん, r, uを用いて表せ。 次に、右回り(z軸の正の向きから見て時計回り)に回転させて円筒を投げ出す場合(wo 0) を 考える。 (7) この円筒のz軸まわりの慣性モーメント「および円筒とともに移動する座標系での投げ出 した直後の運動エネルギーを求めよ。 (8) 円筒底面に働く動摩擦力の0依存性により、円筒の軌道は曲がる。その曲がる向きを理由 とともに答えよ。

解決済み 回答数: 1