学年

教科

質問の種類

物理 大学生・専門学校生・社会人

高校物理のプリントの穴埋めを教えてほしいです! 調べて分かったところはできる限り埋めました! (力のはたらき 高2 物理基礎)

D00000 カー1 ※2カがつり合わない場合 物理基礎プリント No, 13 大きさが異なる 同じ向き 1. カのはたらきと表し方 作用線が異なる ■力の種類 ■力のはたらき 人によるカ以外に、次のようなものが存在する。 運動(速度)を変化させ。(言い換えると→ [ )を生じさせる) (土也王球)の中心が、すべての物体を引く力(質量に比例する。] 重力の大きさを(重さ )ともいう。 の重力 物体の 形を変える。 面の上に置かれた物体に対して、 面から常に( → 物体の運動(速度) が変化したり、 形が変わったときは、必ず、 力がはたらいている。 の垂直抗力 )な方向にはたらく力 [面が物体を押し返すカ) 力の単位:[N)(読み方: ニュートン )を用いる。 面の上に置かれた物体が、滑ろうとするのを妨げる力。次の2つがある。 静止している物体にはたらくもの → ( 静止摩擦力 ) 動いている物体にはたらくもの → ( 3摩擦力 ■力の3要素 力は、力の(同き)、1大きさ)、1作用点 決めないと、そのはたらきが決まらない。→ カの3要素 )の3つの要素を 動摩擦力 へ 静止摩擦力 動摩擦力 引くカ 引く力 力は矢印を使って表す。 矢印の(-さ)は 力の大きさ、矢印の向きは力の向きを表す。 また、作用点を通り、力の向きに引いた )と言う。 IIT 。 矢印の長さ カの大きさ の張力 まっすぐに張った状態の( )などが、物体を引く力 直線(点線]を力の (ゴム)等。のように、力を加えたとき変形する物体が、元に戻ろうと して、相手の物体に及ぼす力 の弾性力 矢印の向き → カの向き 自然長 ※力を加えたとき変形し、力を取り除くと 元に戻る物体を、一般に弾性体と言う。 伸ばしたとき 矢印の始点 → カの作用点 2. つり合う2カ 縮めたとき 弾性力 2つの力が同時にはたらいているにもかかわらず、 物体が ( 吉-) したまま、ある いは、 フリ合っいる)と言う。 ■つり合う2カの例 [いずれも物体は静止している) )している状態のとき、 その物体にはたらく力は( の重力と垂直抗カ の重力と張力 の重力と弾性カ の引く力と静止摩擦力 (作用線が異なるが回転した いので、つり合いと同じと見 なす。) ■2力がつり合う条件 )が同一 の大きさが( い ③向きは (正反大t? へ

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

写真の問題1~3の解法を教えてください。

すること 問題1 xyz 直交座標系の点(x, y, z)において、以下の式で示されるベクトル場 AとBがある。z=0のxy 平 面で、原点を中心とする半径1の円周上の点において、AとBがどのようできるかを図示しなさい。 x A(x, y, z) =(2+ y? y 0 x2 + y? B(x, y, z) = |2+ y?x? +y? 問題2 ベクトル場A とBについて、高さ方向の中心軸がz 軸と重なるように置かれた高さ1、半径aの円 柱表面Sの上で面積分した値をそれぞれ求めなさい。 円柱の下面はz=- 1/2、上面はz= 1/2 に置かれてい るとする。 問題3 原点を中心とするz=0 の平面上の半径aの円周Lを考える。ベクトル場AとBについて、 この円 周をz軸の正方向から見て反時計回りに線積分した値をそれぞれ求めなさい。 問題4 問題 1から3の結果および物理学 III の教科書のガウスの法則およびアンペールの法則の記述を参 考にして、ベクトル場AとBは、電磁気学において、 それぞれどのような物理量によって生ずるのか、さら に、その物理量は xyz 直交座標系のどの位置に存在しているのかについて論じなさい。(ヒント:面積分や線 積分の値が a→0やa→0の極限でどうなるかを考えてみるとよい。) 以上

未解決 回答数: 1
物理 大学生・専門学校生・社会人

量子力学・ハイゼンベルクの交換相互作用についての問題です。 参考書を参考に(あ)〜(え)まで解いてみたのですが、考え方はあっていますか? また、(お)以降の解説をお願いします。ブロッホの定理やフーリエ変換はどのように効いてくるのでしょうか?

III. 以下の文章のあ き の枠内に当てはまる数式や記号を答えよ。 ヘ =1として,スピン角運動量1/2をもつ三つのスピンが,互いに相互作用している系を考え る。スピン演算子を$, S,, $, とすると,系のハミルトニアンは次のように与えられる。 自=-J(S, S+ S,. S。+ $。. S.), J>0. ここでも番目(;= 1,2,3) のスピンのz,9, z 方向成分をそれぞれ好,S, S とする。スピン演算 子の間には (S, SY] = iS}, [SF, SY] = 0などの交換関係が成り立つ、自) = E\d) を満たす。 固有エネルギーEとエネルギー固有状態|)を求めたい。 全スピン角運動量 Shot = $, + $2+S。を使うとハミルトニアンは次のように書き直すことが できる。 自= - + JC, 定数C= あ 'tot このことから基底状態のエネルギー固有値は 時の固有値は S= +1/2, -1/2 のニつであり,これらに相当する1スピン状態をそれぞれ↑。 ↓と記すと,3スピン状態は,|S{ S S3) = |M1),| t)などのように表すことができる。独 立な3スピン状態は全部で 具体的にエネルギー固有状態をあらわしてみよう。 まず基底状態のうちで Sto = St+ Sz + Sg が最大の状態は |S S; Sg) ちに書き下すことができる。 つぎにエネルギー固有状態のうちで Sie = 1/2 のものを求めたい,ハミルトニアンと交換可 能な演算子はハミルトニアンと同時固有状態をもつことを利用する.このような演算子の一つ にスピンをRIS; S; S) = |S; S; S;)のように巡回置換する演算子良がある。-iとなるこ とと,周期系におけるブロッホの定理やフーリエ変換を思い出すと,Rと St。と自の同時固有 状態は適切な定数A(複素数も含む)を用いて い である。 う 種類あり,規格直交基底をなす。にれらの線形結合の形で え のように直 三 る(「4)+A|)+ ^°| +t) V3 と表せることが分かる。Aの取り得る値をすべて列挙すると 底状態となるのは A- か 以上の結果からすでに二つ基底状態が得られた。残りの基底状態を列挙すると, お となる.このうちで,基 の場合である。 き と なる。

未解決 回答数: 1