学年

教科

質問の種類

物理 大学生・専門学校生・社会人

III-1(4)を教えてください。

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、 I ds x r' 4T ¹3 (1) で与えられる。ここで、はSからPに向かうベクトルSP = r 。下の左図参照。 dH= I Sas P III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p,d,z) とし、 その点での規格化された 基底ベクトルをeprepez とする。 円筒座標 (p,Φ, z) の点Pに作られる磁場H (p,p, z) は、 ed の向きであり、磁場のe, 成分, Ho は pのみに依存する、 すなわち H(p, o, z) Hs(p)e. と表すことができることを以下の手順 (1)-(3) で示せ。 = I (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x, 0, 0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 V x H = i (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 2 (3) 最後に、 点Pが円筒座標 (p, 中, z), ≠0の位置にあるとする。 軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中,zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe, 成分, H を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

Ⅲ-1(1)~(4) Ⅲ-2(1)~(3) を教えてください

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds 部分を流れる電流が点Pに作る磁場dH は、 I ds x r' 4 3 (1) で与えられる。ここで、 r'はSからPに向かうベクトルSP、 r' = r 。 下の左図参照。 dH = I S ds III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p, 中, z) とし、 その点での規格化された 基底ベクトルを eps epiez とする。 円筒座標 (p,d,z) の点Pに作られる磁場H (p, 中, z) は、ed の向きであり、磁場のe。 成分, Ho は pのみに依存する、 すなわち H(p,d,z) = Hs (p)eΦ と表すことができることを以下の手順 (1)-(3) で示せ。 (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x,0,0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 (3) 最後に、 点Pが円筒座標 (p,d,z), ≠0の位置にあるとする。軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, V x H = i (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe 成分, H を求めよ。 III-2. 次に、 上の右図のように、 無限に長い円筒に強さの定常電流が流れている場合を考 える。ここで、円筒の断面は半径aの円であるとする。 円筒の中心軸を軸とする。 円筒に は強さの定常電流が軸の正の向きに, 円筒内を一様に流れているとする. (1) III-1 の結果を利用して、 円筒座標 (p, Φ, z) の点Pに作られる磁場 H (p, 中, z) は、 ed の向きを向くことを示せ。 また、 磁場のed 成分, H は p のみに依存することを示せ。 即 ち、この場合も磁場は式 (2) のように表すことができる。 (2) 円筒領域p<α及び円筒外の領域p>αにおいて、電流密度の大きさ i = i を求め (3) マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用して,次の領域 における磁場のe」 成分, H を求めよ。 (a) p<a, (b) p> a

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

初めての質問です! 物理基礎なのですが、例題の回答のところで、ベクトルABの大きさをもとめる際の式がなぜ10×√2なのか教えて欲しいです。三平方の定理では無いのでしょうか。

15 B 10 図12のように,速度で走行しているバスAと,速度vg で走行し ているバスBを考える。 このとき, A に乗っている人が見るBの速度, すなわちAに対するBの相対速度 AB は、次のように求められる。 -> VAB = VB UB - VA (10) DAB=DB-DA VB B VB このように 考えてもよい Aに対するBの 相対速度 VAB VAB = UB-VA VB VA A ⓘ図 12 平面上の相対速度 例題1 相対速度 1秒後 UB VA A 雨が鉛直に降る中を,電車がまっすぐな線路上 を一定の速さ10m/sで水平に走っている。 雨 滴の落下の速さを10m/s とすると,電車内の 人が窓から見る雨滴の速さと, 雨滴の落下方向 と鉛直方向とがなす角の大きさを求めよ。 解 電車の速度をVA, 雨滴の速度を UB, 電車 内の人から見た雨滴の相対速度をVAB とす る。 UB これら3つのベクトルの関係は図のように なるので,雨滴の落下方向と鉛直方向がな す角の大きさは 45° VAB の大きさ=10×√2 = 10 × 1.41・・・ ≒ 14m/s (v2≒1.41 p.263) 20 類題 1 雨が鉛直に降る中を, 電車がまっすぐな線路上を一定の速さで水平に 走っている。 このとき, 電車内の人が見る雨滴の落下方向は、鉛直方向 と 60°の角をなしていた。 雨滴の落下の速さを10m/s とするとき, 電 車の速さを求めよ。 1956 [17m/s] VA -VA -O 10 10m/s 10m/s O VA 45° VAB

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の力学の問題です。2番から何度やっても答えが合いません。解説お願いします。

ry平面上を運動する物体 A がある。この物体の時刻における位置ベクトルa(t) がa(t)= P+2 と表されている。 ここに、ベクトルとは一定のベクトルであり、その成分表示はp=(2,2), d = (4,8) であった。 また、時刻 t = 0 において物体 A と同じ位置を同じ速度で出発した物体Bが、物体Aと同じ直線 上を、速度に比例した加速度を受けながら運動している。 物体Bの時刻t における位置ベクトルを 〒B(t), 速度ベクトルを TB(t) とする。時刻もにおける物体B の加速度は、定数kを用いて -köB(t) と表されていた。 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 数値は全て SI単位系を用いて書 かれている。 分数を答える場合は既約分数で答えること。 12 13 14 15 1. ベクトルアの持つ単位は[m であり、ベクトル」の持つ単位 mu である。 選択肢 ① -3 ② -2③-1 0 1 (6) 2 ⑦ 3⑧ 該当なし 17 x軸上 2. 物体A のry平面上の運動の軌跡は傾き 16 の直線であり、物体は時刻t= 18 の位置 x= 19 を速度 20 21 で通過する。 22 123 である。 3.定数kの持つ単位は[ml 選択肢 ①-3② -2 -1 ④0 ⑤1 ⑦ 3⑧ 該当なし 4. 物体Bの運動を考える。 JB(t) について成立する方程式として適切なものを以下の選択肢より 全て選ぶと 24 である。 dUB JB(t) = (4,8) @ UB(t) = -k(4,8) 3 = -k(4,8) dt 選択肢 d²UB dvB dt = -küB (t) 5 d²UB dt2 = -k(4,8) Ⓡ dt2 5. k = 4 とする。 じゅうぶんに時間が経ったとき、物体B の速度は 25 26 き位置は 27 28 に近づいていく。 -kuB(t) に近づいてい

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理のエッセンスp.44-45のEX3で、床に摩擦がある時と無いときでBが床から受ける動摩擦力が変化するのがよく分かりません。 詳しく教えていただきたいです。

IV 運動の法則 45 F 図AはBから動摩擦力 μmg を左向きに受 m ○m けるので 糸 A man=ー Lmg . aA=ーPg 仮りの姿 動摩擦力 M 一方,Bはその反作用を右向きに受けるので 4mg ) M mO B Map=4mg * ap=Lmg M ●M 動摩擦力の反作用 e Bの式を(m+M)ag= で始める人が非常に多い。Aが乗っていて重いと いう意識からなのだろうが, 運動方程式の質量の項は “注目物体の質量 だった! Bに注目しているからそれは Mなんだ。 Bに対するAの相対加速度αは α=an-ap=-m+M B上で止まるのは相対速度が0になるときだから のm F M M M F m 箱 Mg 44 上の図(b)および(d)で, m と面との間に摩擦があり,動摩擦係数をμとした ときの加速度aを求めよ。 Mu。 0= o+at より t= (m+M)μg Mv。 2(m+M)ug G相対加速度 を活用したい また, 0°-v%=2αl より 1=- 45* 質量 mのAとつり合わせるためにはBの質量 M。はいくらにすればよいか。 次に, Bの質量を M としたところ, Bが下がった。Aの加速度aおよび 糸Bの張力Sを求めよ。 2つの滑車は軽いものとす 定滑車 糸B ここで, oは相対初速度(3Dvo-0) として用いている。なお, AがB上で止 まった後は動摩擦力はなくなり, 2つは一体となって, ひo+aat=0+apt=_" の速さで床上をすべる。 -Vo 糸。 m+M 動滑車 る。 -糸Y ■B Miss 1= vot +ante としてはダメ。 Q^はB上での動きでなく床に対する動き を表しているからだ。運動方程式の加速度は地面に対するものだった! m 製トク Aの動きと比べると動滑車の動きは半分。 Sよっと一言 床に摩擦(動摩擦係数μ)があると, Bが床から受ける動摩擦力は いくらになるか分かるかな? μMg ? それともμ(M+m)g? この場合はμ(M+m)gが正しい。頭がこんがらがりそうだね。 動 摩擦力 μN は床からの垂直抗力Nで決まり, 上下方向では力のつり 合いが成りたち, N=(M+m)gとなるからなんだ。 床は2物体分 の重さを支えなければならない。一考えてみれば当然のことだね。 つまり, Aに比べてBは動く距離, 速さ, 加速度すべてが半分になる。 46* 質量 MのAに質量 m, 長さ1のロープを取り付 け,なめらかな床上をFの力で引っぱる。付け根か らx離れた位置でのロープの張力 Tを求めよ。 M X、 m F A utugS さあ,運動方程式も最終段階だ。次のケースで実力を試してみよう。 Q&A EX3 滑らかな床上に置かれた質量 Mの板B がある。質量 m の小物体 Aが速さ で飛 び乗り,Bの上を滑った。 それぞれの物体 Q この場合 Aは動摩擦力を左向きに受けるのは直感的に分かります。でも, 一般に,動いている板から受ける動摩擦の向きはどのように決めるのですか。 A 速度の向きと逆というのは固定面のときのこと。板が動いているときは, 板 に対する動き(相対速度)と逆向きと判断する。 もし, 相対速度が0なら静止摩 擦の話になる。動摩擦か静止摩擦かは, 地面に対する動きでなく, 接触面が滑 り合うかどうかで分かれるんだ。 m A の加速度を求めよ。また, AがBに対して 止まるまでの時間さとB上で滑る距離!を 求めよ。A, B間の動摩擦係数をμとする。 B M

回答募集中 回答数: 0