学年

教科

質問の種類

物理 大学生・専門学校生・社会人

距離1mの2点では2π/λの位相差! ってところがわかりません... 教えていただきたいです!

ーx[rad]の位相差があるということ! だから, 図の式は も,t=T\s]での位相が2元に対応しているからなんですね。本全 写真y=y(x)から動く波を出すそ~! 実は“一点集中"の単振動の式もy=Asintでなくy=Asinotとしたの ここではもう1つのグラフ, "写真”y=y(x)からy(x, t)を導いておきま 先では一点注目(ギャル)の単振動y=y(t)から波の式を出しましたが、 @IMAGE おでな y A1 しょう。 まずt=0の波形を図のようにします。 先に一点集中から導いたのと同じ波形で A →X -A す。…つまり, 結果も同じになるはずです よ。 2元 これはy=y(x)の形です。 詳しく書くとy=ーAsinーxです。 え!? y=-Asinx じゃないかって~!?? 数学では横軸がx[rad]だったので sinx でOKなのですが, 今やっているのはyーxグラフ!…横軸は位直 x[m」です。図を見ると横軸方向の位置x=1 (波長)の場所は数字Cは 2元でしたね(この sin の中のを位相といいます)。つまりx=0, Aのと では2元の位相差がある!距離1[m] の2点では 2元 の位相差! 原点と 位置xの点では2元 -x [rad] の位相差があるということ! だから, 図の 2元 y=-Asinxとなるんです。 入 も, t=T\s]での位相が2元に対応しているからなんですね。 さあ,次はt秒後の波です。 y=y(x, t) を求めるのがターゲットですよ。 速さぃの 波はt秒後にvtだけ右に動いているハズで y す。 これ布

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えてほしいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えて欲しいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0