学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのn²-1はどのようにわかりますか?

とと,エルミート性のかわりに, 対称性 (A, B)p = (B, A)F が成り立つことです。 実ベクトル空間の内積が複素ベクトル空間の内積と違う点は,実数値をとるこ が直接わかるわけではありません. ここでは量子トモグラフィー, つまり量子状 そのためには, いくつかの種類の測定をしなければなりません. どのような測 多数回測定によってわかるのは, あるオブザーパブルの平均値だけなので, 状態 状 態を決定することを考えます。 定を行えば量子状態を決定できるでしょうか。 ■ 4.1 密度作用素の空間 n次元複素ユークリッド·ベクトル空間H上の密度作用素全体のなす集合Dens の構造をもう少し考えてみます. 密度作用素はエルミート作用素なので, エルミー ト作用素全体のなす集合 Herm に目を向けてみましょう. Herm は実ベクトル空間です. 次元はn次のエルミート行列のパラメータの数を 数えればよくて,対角線にn個の実パラメータ,それ以外のところにn(n-1)/2個 の複素パラメータがあるので, n° 次元になります.さらに、実ベクトル空間 Herm に内積を定義しておきます。 (定義)エルミート作用素の内積 A, B をエルミート作用素とするとき, 内積( , )= : Herm × Herm → Kで (A, B)F = Tr(AB) と定義する。 また,第1スロット, 第2スロットの両方に関して実線形です。 ミ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学・スピンハミルトニアンの時間発展について質問です。(1)〜(3)までは画像2枚目のように解いたのですが、(4)(5)の計算がとても煩雑になってしまいました。この方針で大丈夫なのでしょうか?また、(6)が分かりません。どのように考えればよいのでしょうか?

II. 図3のように番号;= 1,2,3で区別される3つのスピンがあり、それぞれ2軸方向に上向 きと下向きの2つの状態 |0);, [1}; をとることができる。2種類の相互作用 角,。を選択的に 切り替え、1番目と2番目のスピンの状態を3番目のスピンによって制御する。簡単のためプ ランク定数を2で割った定数んを1とし、相互作用白,白および時間tを無次元量として取 り扱う。 自。 ○ン 0 9 三 図3 ここで、1は恒等演算子、9, o9は番目のスピンの演算子,の行列表現である。各演 算子は10); = |0):, of° |1}; = -|1); を満たす。また、3つのスピンからなる状態を|1,0)|0}= |1);|0)2|0)s などと記すことにする。 (1) (),(o)°, of o) + ooを計算せよ。 (2) 9 を 10);, |1);に作用させた結果をそれぞれ示せ。 C○ (3) 白のもとでの時間発展演算子む(t) = exp(-8白t) = とーを白t)”が n! n=0 0(t) = cos° (t)i - sin° (t)a{)a£) + icos (t) sin (t)(o{) + )) を満たすことを示せ。ただし、一般に可換な演算子A, Bについて、e(4+B) - eáeb が成り 立つことに留意せよ。 (4) 白のもとで時間む、続いてのもとで時間tzだけ相互作用したときの時間発展は ()()= exp(-iHnt) exp(-iAt)と記述される。10,0)|0), I0,1)|0), |1,0) |0), |1, 1)|10) の4つの状態がひっ(n/4)0,(m/4) の時間発展をしたあとの状態をそれぞれ書き下せ。 次に、ある状態() = a|0,0) |0) + |1,1}10} (a, 8 は定数)を用意したところ、予期せぬ相互作 用により、1番目のスピンが微小回転してしまい、状態|)= VI-) + €)に変化し た。eの具体的な大きさは分からないが、状態|)をもとの状態」)に戻したい。 (5) 状態」)を問(4) のD2(T/4)ü,(T/4) によって時間発展させると、 Us(r/4)(r/4)) = \)) + i¢)10) という状態に変化した。1番目と2番目のスピンからなる状態|), o)をそれぞれ具体 的に書き下せ。 (6) 問(5) の状態に対し、3番目のスピンの測定をおこなうと、状態|)|1) と状態|o)|0)の いずれかが得られる。それぞれの状態に対してさらに個別にある演算子を作用させると、 微小回転量eの情報なしに状態 |) に戻せる。各状態について必要な演算子を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物性物理学の本を読んでいて、質問があります。 本では, 量子力学による1電子原子の電子状態の記述について 添付のように述べていて, (1.12)式までは良いのですが, 赤枠で囲ったところの式(1.13)の導出過程が知りたいです。 よろしくお願いいたします。

$1.2 1電子原子の電子状態 1 p° = 2me 2 a 1 V= 2m。 2m。(r+ r dr 原子においては,原子核を中心としてそのまわりの半径10-10m程度の領 の形となる。ここでAは次のような角度に関する微分演算子である。* 域を電子が運動している。原子の構造を理解するためには,この電子の振舞 1 sin 0 d0 1 を調べなくてはならない。まず最も単純な場合として,Ze の正電荷をもった A= - (sin 0 sin' 0 核のまわりを,1個の電子が運動している場合を考える。Z=1であればこ 1電子原子のハミルトニアンがこのように具体的に与えられた.このハミル れは水素原子そのものであり,Z =2であれば He* イオンということにな トニアンに対するシュレーディンガー方程式(1.9) は2階の微分方程式の形 る。 をしている。これを満たす解として波動関数T(r, 0, φ) が求まれば,1電 原子の質量のほとんどは核に集中しているので、そこを重心として座標の 子原子における電子の分布の様子がわかる。ところで,原子に属する電子の 原点にとってさしつかえなかろう。電子は -e の電荷をもち,核の正電荷 波動関数は,核から十分遠方(r→0)ではゼロに収束するはずである。こ Ze とクーロン相互作用をもつ。そのポテンシャルエネルギーは電子と核の のような境界条件の下で(1.9)式を考えると,電子のエネルギー固有値 E が 間の距離rに反比例し, 離散的な特定の値をとるときのみ解が存在する。これは量子力学系の顕著な Ze? V(r) = - 特徴である。 4TE0ア 最も低いエネルギー固有値を与える解は球対称で、次の形をしている。 である。* これは万有引力と同じ形をもつので,古典的に考えれば,地球が 17Z/2 ( exp(-) 太陽のまわりを回るように電子は核のまわりを楕円軌道を描いて回ると考え 『(r) = たくなる。しかしながら,このような極微の世界まで古典ニュートン力学が ただし,ここで そのまま成立するわけではない,電子の振舞を正しく理解することは,今世 4TEh An = mee? =0.529 A 紀初頭登場した量子力学をもってはじめて可能となった。量子力学によると, 電子の存在確率は波動関数 『(r)の絶対値の2乗に比例する。定常状態では 『(r)は次のシュレーディンガー方程式を満たすというのが量子力学の骨子 はボーア半径とよばれる。 である。 H V (r) = ET (r) ここで はハミルトニアンで,電子の運動エネルギーとポテンシャルエネ ルギーの和であり, 1 p°+ V(r) 2m。 H = の形をもつ。** 第2項のポテンシャル項は方向によらず,核からの距離のみ に依存するので,全体を極座標を用いて表した方が都合がよい。このとき, 第1項の運動エネルギーの部分は Eo = 8.8542 × 10-12 F/m は真空の誘電率。 m。は電子の質量,p= - iAVは運動量オペレータである。ただし,▽はナプラと読 み,直交座標系では 定,立,えを直交する単位ペクトルとして、V= -+ の形をもつ微分演算子である。カ = h= 6.626× 10-4JSはプランク定数。

解決済み 回答数: 1