学年

教科

質問の種類

物理 大学生・専門学校生・社会人

ここの大門2、3が全く手がつきません。 解説お願いします。

速度に比例する摩擦が働く放物運動を取り上げよう。 始めの位置を原点にとって、上向き正のxy座標で考えて 以外に速度ベクトルv= 0 みる。 この場合、 物体には重力ベクトル mg= (_゜ に比例する抵抗力ベク -mg Vy -kvz トルf=-kv= が働く。物体に働く力の合力ベクトルはmg+f=mg-kv= とな -kvI -kvy -mg - kvy る。よって、運動方程式のベクトル式、 F = ma、 の F に mg + f をいれて成分ごとに微分方程式を解けばよい。 問題 2. 以下の問いに答えよ。 (30) (a) この運動について、方向と方向の運動方程式を書け。 (b) 初期条件として、 水平線から角度0の方向に速度ベクトルの大きさで。 で物体を発射したとする。 各運 動方程式を解いて、 速度ベクトルを時間の関数として求めよ。 y 座標は∞までいけるとして、t→∞ での速度ベクトルを求めよ。 (c) 位置ベクトルを時間の関数として求めよ。 そして t∞で到達できるx座標の最大値を求めよ。 (d) t〜0近傍の Cr, y, T,yの近似式を指数関数のTaylor 展開を用いて求めよ。 このとき、速度に関して はtの1次、座標については2次までとること。 3. 速度に比例する摩擦 (係数k) が働く時に、 真下に初速 vo で投げ下ろす場合の速度を時間の関数として求め よ。 但し、座標は下向きを正としt=0でx=0 とする。(20)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題分かる方いますか?

力学演習 A 課題 (2) mgsinoza *5. 図のように, 角度0の斜面に平行にフックの法則にしたがうバネが設置され、 先端には質量mの物体が取り付けられて いる。 バネは自然長からの伸びまたは縮みに比例した復元力=kを物体に及ぼす。 ここでkはパネ定数と呼ばれる 正の定数である (k = mu² として, kの代わりにωを使って答えても構いません)。 斜面は滑らかであり、摩擦力は無視 できるとする。この問題では、図のように斜面に沿って軸を取り、斜面を登る向きを正とする。 また, 斜面に垂直に 軸を取る。 物体の大きさは無視できるとし、バネの自然長での物体の位置を原点とする。 物体は最初, バネの長さが自然 長になるように支えられ, 原点に静止している。 0 Ex Hawa 14 I 学籍番号 (b) 物体の位置のæ成分をx(t) とし、時間tの関数で表せ。 (d) 物体が行う単振動の周期を求めよ。 (a) 時間 t = 0 で物体からそっと手を離したところ, 物体は斜面を滑り落ち、その後は単振動を行った。 単振動の中心の 位置の成分を求めよ。 伝方程式より、 mx = kx-mgsin = klx-ngsing (c) 物体の運動する速さが最大となる位置の成分とその速さを求めよ。 氏名 ※単振動の中心の位置をX。 とすると、 タ) 分からなかったことや間違えたことは何か? また、説明してほしいことあれば、書きなさい。 to mgsino 2

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1問目の答え合わせがしたいです。 教えて頂けたら幸いです!

【相対運動】 ただし,重力加速度をg (=9.81m/s²) とする. 問1 図1のような時計回りに角速度で回転している大円板の上に,さらに回転することができ る小円板がつけられている. 小円板はモーターのスイッチを入れることで回転させることができる. モーターのスイッチを入れて, 小円板を大円板に対して時計回りにの角速度で回転させた. 図の 位置に来たときの, P点の加速度 αx, ay を求めよ. 問2 対気速度 230km/h の小形飛行機が, 東へ機首を向けて飛ぶと北へ 15° 経路が傾き, 南へ機首を 向けると西へ 17°経路が傾く. 風の方向と風速を求めよ. 問3 西暦 23XX年、人類は巨大な円筒状のスペースコロニーを宇宙空間に建設し生活している. コ ロニーは一定の角速度で回転しており, 内壁部では地上と同じ重力加速度が発生している. ここで生 まれた太郎君は,自分の住んでいるコロニーの半径が知りたくなり,以下の実験を行った. 実験 : 床に目印を描き,そこから真上1mの高さからビー玉を落とす. 実験の結果, ビー玉はコリオリカのため、床の目印から1.60cm ずれて着地した. このコロニーの 半径を求めよ. 問4 問3の太郎君が, ボールを真上に投げたところ, ちょうど4秒後に地上に落ちてきた.このと き, ボールの落下地点はコリオリ力により、 投げた場所とずれていた. 何m ずれているか求めよ. ただし, コロニーの半径はボールを投げ上げた高さに比べて十分に大きく, 風や空気抵抗などの影響 はないものとする. 問5 図2のような半径上に溝を掘った円板がある. いま, 時刻 0おいて,この円板の中心から外側 に向かって, ある物体が溝の上を一定の速度Vで移動し始め,また, 円板も止まった状態から一定 の角加速度αで回転し始めたとき, この物体の加速度 ar, aeを時間の関数として求めよ. 問6 図3のように半径3000mのカーブを時速270km/h の一定速度で走っている列車がある. この 列車の座席に座っているA君が, 幅 1m のテーブルを出して, その上に小球を置いたところ, 静かに 転がり始めた.このとき, t秒後の方向および, 方向の速度をtの関数として求めよ. 図 1 図 2 3000m A君 _270km/h 1 図 3 点O 進行方向 1m A君 テーブル

回答募集中 回答数: 0