学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

図の力の分解がよくわかりません。

2m モータ A VA ワイヤ 20° ZALOM 5m (0,0)m 1000NP (a) 問題 B (0,2)m x. UCA UCB F₁ R C (5,-1)m (b) 図 2.22 【例題2・3】 | Im F となる.これは,未知数, 関する連立 F = (u2yFx-uF)/d, F2 = (-uyFx+u,F,)/d (2.23) MUSTH と表される.ただし,d=ax^2-y. このとき,F, >0となったなら分 カF は と同じ向き, F <0 となったなら逆向きであることを意味する (F2 についても同様).また,各分力の大きさは,それぞれ, |,|,|F2|となる. なお,との方向が同じ場合, d=0となり分解を行うことはできない. JJANKALINAFANA 【例題2.3】 * * * * 図 2.22(a) のようなクレーンで荷物を一定速度で持ち上げている. モータが 1000N の力でワイヤを巻き取っているとき, 点Cに作用する力が部材 AC お よび BC の長さ方向に与える力はいくらか. 点Cに作用する力を各部材の長 さ方向に分解することで求めよ. ただし,部材には力は長さ方向にのみ作用 し,点Cに取り付けられたプーリの径は十分に小さいもとのする. 【解答】 図 2.22(b)に示すように,点Aに原点を持つ座標系を設定して考え る.点Cにはワイヤに沿ってカF と F2 が作用するが, それらの合力 R は以 下のように計算できる 0 5000+00:62) = (1 216.JP F = (-1000cos20°,-1000sin20°)=(-939.7,-342.0)N F2=(0,-1000)N 08 20 R=F+F2=(-939.7, -1342) N 合力 R を各部材の長さ方向に分解する. 点CからAの方を向く単位ベクトル 2001 1 Acred (2.24)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

ぜーんぶ分かりません 解説付きでお願いします

【圧力,血圧,仕事とエネルギー, 温度と熱】 問① 右の図において, ポンプからの圧力 P1 を次の(A)~(C)にしたがって表せ。 ただし、水の密度は1g/cm² とする. (A) 単位を mmH2Oとして表せ. (B) 単位を mmHgとして表せ. (C) 単位を Paとして表せ (水の密度を単位変換してから計算すると良い) . 問② 平均血圧 110mmHgの人が、仰向けで寝ている時は、 心臓部、頭、足の動脈の血圧は110mmHgで同じだった。 右図のように起立した直後、 心臓部の血圧が110mmHg であったとき、頭部と足部の動脈の血圧をそれぞれ計算 して、 血圧値を右図の( )内に記入せよ。 (ただし、血液の密度は水と同じとみなし、 水銀の密度は血液や水 の密度の 13.6倍とする。 血管の摩擦や血液の粘性は無視する。) ( ) mmHg -163.2 cm ポンプからの圧力 110 mmHg -122.4 cm ) mmHg 0cm 問④ (A) おむすび1つの熱量が 180kcal であるとき, これは何kJになるか? 大気圧 Po 問③(A)質量 500gのボールが高さ30mのところにあるとき,何Jの位置エネルギーを持っているか? (B) 15℃のエタノール 100g と 60℃の水 500gを混ぜて600gのアルコール溶液を作った. この溶液の温度は何℃になるか? ただし、簡単にするため、エタノールの比熱は 2.09J/g℃として計算せよ. ・頭部 (B) (A) の状態からボールを落下させたとき, 高さ0mに到達したときのボールの速度は何m/sか? (ただし、空気抵抗やボールの回転は無視する) 水 ・足部 30cm ・心臓部

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の解き方を教えてください。

4 明雄さんと拓也さんは、図1のように,長方形の厚紙の両 端を折り立て 折り立てた部分にアルミニウムはくをはってレ ールをつくった。 そして、2つのレールの間に方位磁針を置き, 方位磁針の真上になるようにシャープペンシルのしんXをレー ルにのせた。この装置に, 手回し発電機のハンドルを時計回り に回して、電流を流した。 < 熊本 > (1) 図2は、図1の装置のしんXをのせた ところを真上から見たものである。 手回し発電機のハンドルを回している とき, 方位磁針の針が図3のように振れ たのは,電流のまわりに ① が発生し、 電流が ② (アaの向き イ bの向き) に流れていたためである。 ① にあてはまることばを書け。 また, ②にあてはまることばをア, イから選べ。 図2 手回し発電機 を回す前 しんX to レール N極 方位磁針 手回し発電機 14 64 レール 図3 しん× 方位磁針 手回し発電機を 回しているとき 針が振れ した向き ~N極 ① ( (2) 明雄さんが,図1の方位磁針をしんXの真上のできるだけ近くに手で持ち上げた状態で拓也 さんが手回し発電機のハンドルを時計回りに回して電流を流したとき, 方位磁針のN極がさす向 きはどうなるか。 次から選べ altb pos 161

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2、問3、問4がわかりません お願いします🙇‍♀️

1分 10/m totals 仕事: kg・m²・5-2、 仕事率: kg・m2-s-3、 電圧: kg・m2・S-3A-1・ 温度 : K 148/-0/60170 2.4 2016/08 野球のボールの質量は約150g である。 球速 144 km/h で放たれたボールが持つ運動エネル 1/1.0.15kg・140)=120J=0.12KJ 問4 練習問題 9-2 間1 ギーはいくらか。 問2 時速60km/h で直進する車 (質量1500kg) について以下の問いに答えよ。 ((1) この車が持つエネルギーはいくらか。 この車が持つエネルギーを得るために必要なガソリンの量はいくらか。 (2) ただしガソリンの発熱量は 30 MJ/L であり、エネルギーは全て自動車に伝わるものとする。 問3 心臓は常に収縮と弛緩を繰り返すことで、 大量のエネルギーを消費している。 体重45kg の成人女性において、 その血液量が 3.5L、 最高血圧 (収縮期血圧)が100mmHgであ った。このとき心臓の収縮に使用された仕事はいくらか。 ただし、760mmHg=1013 hPa とする。 練習問題 9-2 解答 問1 0.12 kJ 問2 (1) 210kJ (2) 7mL 問3 kg・m・5・2、圧力: kg・m・15:2、 問4 高さ634mの東京スカイツリーから質量10kgのボールを落とした。 (1) 落とす前のボールが持つ位置エネルギーはいくらか。 ただし重力加速度を10ms-2 とする。 634× (2) 334m でのボールの落下速度はいくらか。 ただし、空気抵抗はないものとする。 46.7 J (1) 63.4 kJ (2) 77.5m's-1 EX 009/16 40m/1 =634 16:

回答募集中 回答数: 0