学年

教科

質問の種類

物理 大学生・専門学校生・社会人

1から5の問題が全く持ってわかりません 明日までに解かなければならないので解説してくれる方がいたら嬉しいです

1. 次の式の両辺の各項の次元を調べよ。 但し、は長さの次元、tは時間の次元、mは質量の次元であり、 v を 速度、gを重力加速度、 f を力とする。 力の次元は[f]=MLT-2。 (10) (a) f=mg-ku となるときのの次元を求めよ。 このkを用いた式: mg k の中身の次元を求めよ。 (b) (a) と同じょを用いた式: 4.2 次元極座標の速度表示 問題 2. ある物体が2次元上を運動し、そのx,y座標が時間tの関数として、 r = Acos(wt+a), y = Asin(wt+a) で与えられている。このとき、この物体の速度ベクトルと加速度ベクトルを時間tの関数として求めよ。 (20) 5.2 次元極座標の加速度表示 合には、 der dea と dt d.t 3. 式 (11), (12) の両辺を時間で微分することにより、 去する。) この計算結果でわかる通り、 極座標の基本ベクトルは時間とともに変化する。 (20) v² mg k T = dr dr dt dt do e を導け。 この式でわかるように、 速度の方向成分がの時 dt dr dt 間微分なのに対し、 0 方向成分は、 半径 × 角速度となっている。 等速円運動の場合には、 = 0 なので、 v=rw になる。 (20) m --t t+ (em-1) の次元。 der dt2 -er + r 問題 d²r dt2 になることを示せ。 (30) -t 1-em の次元およびe を計算し、er と e で表せ。 (ex, ey を消 do dr do d²0 r (1) ² } e₁ + {2 d d + ² } er dt dt dt dt2 ee を導け。 等速円運動の場

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学についての質問です。 応用流体力学の問題なのですが、全くなに言ってるかわからないので、どなたか知っている方がいればお知恵をお借りしたいです。 全然わからないので、お助けいただけると本当に嬉しいです。よろしくお願い致します!! ・1 ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学の問題についての質問です‼︎ 応用流体力学の問題が全くわからないので、どなたか知っている方がいればお知恵をお借りしたいです。。 すごく、難しいと感じていて困っているので、どうか助けていただければ嬉しいです。 ・(1) パスカルのパラ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

5-c, 6-bを教えていただきたいです

5) 図 4.2 に示すように抵抗値 R の抵抗と容量Cのコンデンサが接続された回路がある. 入力を電圧e(t), 出力をコンデンサ両端の電圧vc (t) とする. 問5)においては, t=0 で 回路は静止状態にあるものとする. 静止状態とは,すべての素子に流れる電流,及び 素子両端間の電位差が0である状態をいう. a)この回路の入出力間の伝達関数H(s) = Vc(s)/E (s)を求めよ. ここで, Vc(s), E(s)は, それぞれ, vc(t) とe(t) のラプラス変換である. b)この回路に入力として, 高さ のステップ電圧e (t) = vou(t) を与えた時の出力vc(t) を求め,さらに図示せよ。 ただし, v > 0 とする. c) この回路に入力として, パルス幅Tで高さv のパルス電圧を与えた時の出力v(t)を 求め,さらに図示せよ。このとき, 入力e(t) は,式 (4.2) で定義したパルス波p (t) を 用いて, e(t) = vop (t) と表すことができる. し 単位ステップ関数をuct)として Pit) = u(t) - ult-Ti) e(t) R C vc(t) 図 4.2 RC 回路 6) 図 4.2の回路の入力として, パルス幅T」で高さ v のパルス電圧を周期Tで繰り返し与 える.ただし,T> T1 とする. 十分に遠い過去から入力が与えられ, t≧0では回路が 定常状態に達しているとする.定常状態では, vc(t) = vc(t + T)となっている.この とき,0≤t<Tの1周期の出力を求めたい. a) 図 4.2の回路で, vc (0) 0の場合の, E(s)とVc(s) の間に成り立つ関係式を求めよ.こ こで, Vc(s), E(s) は, それぞれ, vc (t) とe(t) のラプラス変換である. b)上記 a)で求めた関係式を用いて,入力e(t)としてvop(t)を与えた時の出力v(t)を求 めよ.ただし, vc (0) は未知数として残したままで解くこと. e) 上記 b)で求めた式で, vc(0) = vc(T)の関係を用いてvc(0)を求めよ.

解決済み 回答数: 1