学年

教科

質問の種類

物理 大学生・専門学校生・社会人

ここの大門2、3が全く手がつきません。 解説お願いします。

速度に比例する摩擦が働く放物運動を取り上げよう。 始めの位置を原点にとって、上向き正のxy座標で考えて 以外に速度ベクトルv= 0 みる。 この場合、 物体には重力ベクトル mg= (_゜ に比例する抵抗力ベク -mg Vy -kvz トルf=-kv= が働く。物体に働く力の合力ベクトルはmg+f=mg-kv= とな -kvI -kvy -mg - kvy る。よって、運動方程式のベクトル式、 F = ma、 の F に mg + f をいれて成分ごとに微分方程式を解けばよい。 問題 2. 以下の問いに答えよ。 (30) (a) この運動について、方向と方向の運動方程式を書け。 (b) 初期条件として、 水平線から角度0の方向に速度ベクトルの大きさで。 で物体を発射したとする。 各運 動方程式を解いて、 速度ベクトルを時間の関数として求めよ。 y 座標は∞までいけるとして、t→∞ での速度ベクトルを求めよ。 (c) 位置ベクトルを時間の関数として求めよ。 そして t∞で到達できるx座標の最大値を求めよ。 (d) t〜0近傍の Cr, y, T,yの近似式を指数関数のTaylor 展開を用いて求めよ。 このとき、速度に関して はtの1次、座標については2次までとること。 3. 速度に比例する摩擦 (係数k) が働く時に、 真下に初速 vo で投げ下ろす場合の速度を時間の関数として求め よ。 但し、座標は下向きを正としt=0でx=0 とする。(20)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題分かる方いますか?

力学演習 A 課題 (2) mgsinoza *5. 図のように, 角度0の斜面に平行にフックの法則にしたがうバネが設置され、 先端には質量mの物体が取り付けられて いる。 バネは自然長からの伸びまたは縮みに比例した復元力=kを物体に及ぼす。 ここでkはパネ定数と呼ばれる 正の定数である (k = mu² として, kの代わりにωを使って答えても構いません)。 斜面は滑らかであり、摩擦力は無視 できるとする。この問題では、図のように斜面に沿って軸を取り、斜面を登る向きを正とする。 また, 斜面に垂直に 軸を取る。 物体の大きさは無視できるとし、バネの自然長での物体の位置を原点とする。 物体は最初, バネの長さが自然 長になるように支えられ, 原点に静止している。 0 Ex Hawa 14 I 学籍番号 (b) 物体の位置のæ成分をx(t) とし、時間tの関数で表せ。 (d) 物体が行う単振動の周期を求めよ。 (a) 時間 t = 0 で物体からそっと手を離したところ, 物体は斜面を滑り落ち、その後は単振動を行った。 単振動の中心の 位置の成分を求めよ。 伝方程式より、 mx = kx-mgsin = klx-ngsing (c) 物体の運動する速さが最大となる位置の成分とその速さを求めよ。 氏名 ※単振動の中心の位置をX。 とすると、 タ) 分からなかったことや間違えたことは何か? また、説明してほしいことあれば、書きなさい。 to mgsino 2

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1から5の問題が全く持ってわかりません 明日までに解かなければならないので解説してくれる方がいたら嬉しいです

1. 次の式の両辺の各項の次元を調べよ。 但し、は長さの次元、tは時間の次元、mは質量の次元であり、 v を 速度、gを重力加速度、 f を力とする。 力の次元は[f]=MLT-2。 (10) (a) f=mg-ku となるときのの次元を求めよ。 このkを用いた式: mg k の中身の次元を求めよ。 (b) (a) と同じょを用いた式: 4.2 次元極座標の速度表示 問題 2. ある物体が2次元上を運動し、そのx,y座標が時間tの関数として、 r = Acos(wt+a), y = Asin(wt+a) で与えられている。このとき、この物体の速度ベクトルと加速度ベクトルを時間tの関数として求めよ。 (20) 5.2 次元極座標の加速度表示 合には、 der dea と dt d.t 3. 式 (11), (12) の両辺を時間で微分することにより、 去する。) この計算結果でわかる通り、 極座標の基本ベクトルは時間とともに変化する。 (20) v² mg k T = dr dr dt dt do e を導け。 この式でわかるように、 速度の方向成分がの時 dt dr dt 間微分なのに対し、 0 方向成分は、 半径 × 角速度となっている。 等速円運動の場合には、 = 0 なので、 v=rw になる。 (20) m --t t+ (em-1) の次元。 der dt2 -er + r 問題 d²r dt2 になることを示せ。 (30) -t 1-em の次元およびe を計算し、er と e で表せ。 (ex, ey を消 do dr do d²0 r (1) ² } e₁ + {2 d d + ² } er dt dt dt dt2 ee を導け。 等速円運動の場

回答募集中 回答数: 0