学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気の問題です。大至急解き方を教えていただけないでしょうか……。全く解き方がわかりません。どなたかどうかお願いします

問題5 (この問題では適宜対称性を援用せよ.なお, 1) 2) では Ia はIのままで計算すれば よい. 3) では Ia の表式の計算が必要となる) 極板が半径rの金属円板, 極板間距離がl の (十分理想的な) 平行板コンデンサがあるとする. いまこのコンデンサは充電中であるとする. 充電中には極板間の電場は時間変化するが, 空間的には一様 (極板間のどこでも同じ) であると仮定する.また, 2枚の極板が底面(上面・ 下面), 高さlの円柱を考えておこう. の → 1) 極板間では電流密度はすであるが,変位電流密度 J = o はすではない。極板間 で極板と同じ半径rの円板面をDとするとき をDにおいて面積分したものを,変位電 at 流La=pn as とする。 上記の仮定より Laは極板間で一様となる。変位電流 I』が上記 Jar Hola の円柱の側面に作る磁場の大きさBがB= となることを示せ. 2πr 2) 極板間の電位差を Vとする. 上記の円柱の側面におけるポインティングベクトルの大きさ Sを計算し, Sを側面にわたって積分したものを W とすると W = VI』 となることを示せ . πr² 3) 定数Cを C= com とおく。 時刻がt=0〜tのときに、電位差がV= 0〜V と変化した l とする.このとき, 2) の Wを積分すると - wa = 1/2 CV2 となることを示せ。 W dt

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学についての質問です。 応用流体力学の問題なのですが、全くなに言ってるかわからないので、どなたか知っている方がいればお知恵をお借りしたいです。 全然わからないので、お助けいただけると本当に嬉しいです。よろしくお願い致します!! ・1 ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学の問題についての質問です‼︎ 応用流体力学の問題が全くわからないので、どなたか知っている方がいればお知恵をお借りしたいです。。 すごく、難しいと感じていて困っているので、どうか助けていただければ嬉しいです。 ・(1) パスカルのパラ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解き方と答えがわからないので教えてほしいです。お願いします。

力のモーメント:腕に垂直な力の成分×腕の長さ INJ に! 125m [7] タイヤのナットを長さ25cmのレンチを使って回そうとしている。 200Nの力を30°の角度で加える ときの力のモーメントを求めなさい。 200N Fr=200N =200N -25cm- 200N Fr J =100√3N M=1000f3N×0.25m 25 √3 N.m [8] 水平な床の上に荷物が置かれている。 (1)~(3) の力がした仕事をJ単位で求めなさい。 (1) 鉛直上向きに 10Nの力で 1m 持ち上げたとき、この力がした仕事 (2) 右向きに 10N の力で 3m移動させたとき、この力がした仕事 (3) 荷物が右向きに1m移動して静止した。 このとき摩擦力 2Nがした仕事 1 x 57 c 0-7 cos 300 $ 2 [9] 質量 80kg のバーベルを 0.7秒で 50cm 持ち上げたとき、発揮したパワー (仕事率)をW単位で求め なさい。 0.7 ION X 1 = 10 J 10N×3m=右向きに3丁 -2NX1m=2丁 (左向きに2J) [10] 運動エネルギーの変化量を求めなさい。 (1)質量 1.0kgの物体が速度 1.0m/s から速度 4.0m/s になったとき k=1/12x1kg (2) 質量 3.0kgの物体が速度 4.0m/sから速度 1.0m/sになったとき 2560W [11] [ ]内の位置を基準にしたときの、重力による位置エネルギーをJ単位で求めなさい。 (1) 床から1.0mの高さにある質量 3.0kgの物体の位置エネルギー 〔床を基準〕 (2) 床から1.0mの高さ、 天井から0.5m下にある質量 2.0kgの物体の位置エネルギー [天井を基準〕

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

III-1(4)を教えてください。

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、 I ds x r' 4T ¹3 (1) で与えられる。ここで、はSからPに向かうベクトルSP = r 。下の左図参照。 dH= I Sas P III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p,d,z) とし、 その点での規格化された 基底ベクトルをeprepez とする。 円筒座標 (p,Φ, z) の点Pに作られる磁場H (p,p, z) は、 ed の向きであり、磁場のe, 成分, Ho は pのみに依存する、 すなわち H(p, o, z) Hs(p)e. と表すことができることを以下の手順 (1)-(3) で示せ。 = I (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x, 0, 0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 V x H = i (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 2 (3) 最後に、 点Pが円筒座標 (p, 中, z), ≠0の位置にあるとする。 軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中,zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe, 成分, H を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

Ⅲ-1(1)~(4) Ⅲ-2(1)~(3) を教えてください

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds 部分を流れる電流が点Pに作る磁場dH は、 I ds x r' 4 3 (1) で与えられる。ここで、 r'はSからPに向かうベクトルSP、 r' = r 。 下の左図参照。 dH = I S ds III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p, 中, z) とし、 その点での規格化された 基底ベクトルを eps epiez とする。 円筒座標 (p,d,z) の点Pに作られる磁場H (p, 中, z) は、ed の向きであり、磁場のe。 成分, Ho は pのみに依存する、 すなわち H(p,d,z) = Hs (p)eΦ と表すことができることを以下の手順 (1)-(3) で示せ。 (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x,0,0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 (3) 最後に、 点Pが円筒座標 (p,d,z), ≠0の位置にあるとする。軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, V x H = i (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe 成分, H を求めよ。 III-2. 次に、 上の右図のように、 無限に長い円筒に強さの定常電流が流れている場合を考 える。ここで、円筒の断面は半径aの円であるとする。 円筒の中心軸を軸とする。 円筒に は強さの定常電流が軸の正の向きに, 円筒内を一様に流れているとする. (1) III-1 の結果を利用して、 円筒座標 (p, Φ, z) の点Pに作られる磁場 H (p, 中, z) は、 ed の向きを向くことを示せ。 また、 磁場のed 成分, H は p のみに依存することを示せ。 即 ち、この場合も磁場は式 (2) のように表すことができる。 (2) 円筒領域p<α及び円筒外の領域p>αにおいて、電流密度の大きさ i = i を求め (3) マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用して,次の領域 における磁場のe」 成分, H を求めよ。 (a) p<a, (b) p> a

回答募集中 回答数: 0